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GLOSSARY 

(ordered alphabetically) 

centiMorgans (cMs): A physical map specifies the physical position of markers on the 

chromosomes, in a genetic map distance is measured by the rate of cross-over events at 

meiosis. Two markers are d centiMorgens (cMs) apart if there is an average of d crossovers in 

the internvening interval in every 100 products of meiosis (Broman et al., 2003). 

cis-eQTLs and trans-eQTLs: cis-eQTLs refer to genetic variants that affect a locus expression 

only on the same haplotype, while trans-eQTLs affect both. Therefore, cis-eQTLs tend to be 

“local”—close to the locus of the gene encoding the regulated transcript, while trans-eQTLs tend 

to be “distant”—away from the gene. 

Drosophila Synthetic Population Resource (DSPR): It is comprised of a panel of 

approximately 1700 recombinant inbred lines (RILs) of Drosophila melanogaster, created by 

intercrossing 8 inbred founder lines (King E.G., 2012). 

eQTL: expression Quantitative trait locus. QTL is a region of the genome that contributes to 

variation in a quantitative trait such as height, blood pressure. eQTL analysis treats the gene 

expression levels as quantitative traits and it searches for genomic loci that are responsible for 

the differential gene expression levels. 

Expression heterogeneity (EH): used to describe patterns of expression variation due to 

unknown, unmeasured, or too complicated to measure factors (Leek and Storey, 2007). Without 

considering expression heterogeneity, the result will be less reliable, not only because of 

reduced power but also false positive signals. 

LOD score: The LOD score is the logarithm of odds base 10. It is a statistical test often used for 

linkage and association analysis. The LOD score compares the likelihood of obtaining the test 
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data if the two loci are indeed associated to the likelihood of observing the same data purely by 

chance. Large LOD scores favor the presence of correlation. 

MA plot: MA plot is a useful way to compare two groups. Each dot in the plot represents one 

gene. The reads on the x axis show the average expression profile throughout all the samples, 

while the y axis shows the log2 fold change between the lead treatment and the control.  

Master-modulatory gene: We believe that the cluster of genes in each trans-eQTL hotspot is 

co-regulated by a gene encoded at the chromosomal locus (Ruden D.M., 2009b). The potential 

regulatory gene is called master-modulatory gene. 

MatInspector: It is a software tool developed by Genomatix® to predict transcription factor 

binding sites via locating motif matches in DNA sequences (Cartharius K., 2005). 

Microarray: A DNA microarray contains a specific DNA sequence (probe). It is a hybridization 

of DNA samples to a large collection of probes. Scientists use this technique to measure the 

level of gene expression or gene structure. 

NMDAR: N-methyl-D-aspartic acid receptors  

Pair-end reads: Short cDNA fragments can be sequenced from one or both ends (Majewski J., 

2011).  

QTL: a QTL represents a genomic location that is responsible for the variation in the 

quantitative trait of interest (eg. height, body weight). 

Recombinant Inbred Lines (RILs): An organism with chromosomes that incorporate a 

permanent set of recombination events between chromosomes inherited from two or more 

inbred strains. 

RNAi: RNA interference is a biological process that inhibits post transcriptional gene expression 

via RNA molecules such as microRNA and small interfering RNA. 
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RNA-seq: RNA sequencing, one of Next Generation Sequencing (NGS) applications, is 

sequencing mRNA present in a sample. Usually, mRNA is isolated from an organism or a 

tissue, converted into cDNA and cut into small fragments. Millions of those small fragments will 

be sequenced. Aligning these short sequences to the genome can provide information on gene 

expression (Majewski J., 2011).  

R/qtl: is a QTL mapping software that is run in R environment. It is developed by Dr. Karl W. 

Broman and Dr. Saunak Sen. 

sQTL: SNPs that influence the regulation of transcript isoform levels are referred to as “splicing 

QTL” (sQTL) (Pickrell J.K., 2010). 

Trans-eQTL hotspots: This term is used to describe the chromosomal regions that influence 

the expression levels of multiple genes. It is a genomic locus that is associated with the 

regulation of a cluster of genes, regardless of their transcript locations. 
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CHAPTER 1 IDENTIFICATION OF EXPRESSION QTLS 

Introduction 

Lead Toxicity  

Lead exposure has long been one of the most important topics in global public health. 

The major lead sources up until the 1970s when they were restricted in the United States were 

lead-containing paint and gasoline. The phase-out of these two sources in the US has resulted 

in dramatic reductions in mean blood lead level (BLL); however, lead exposure from 

environmental contamination remains a major world public health issue (Dietrich, 2001; White 

L.D., 2007). It was reported by the World Health Organization (WHO) that lead exposure is 

predicted to account for 143,000 deaths per year throughout the world and it is considered as 

one of the highest burdens in developing countries (WHOteam, 2015). Lead contamination in 

our city of Detroit and our neighboring city Flint have been one of the heated topics for debate in 

the last two years because of the Flint Lead Water Crisis, which was caused by switching Flint’s 

water supply from Lake Huron to the more corrosive Flint River (Hanna-Attisha et al., 2015).  

The long-term effects of lead poisoning on humans, especially on children, include 

damage to the nervous system, heart, bones, intestines, kidney and reproductive system 

(Jedrychowski W., 2011). In early 2012, the Centers for Disease Control (CDC) lowered the 

reference blood lead level for children and pregnant women from 10 µg/dl to 5 µg/dl (Bellinger, 

2013). Both the WHO and CDC have emphasized that no known level of lead is considered as 

“safe”, referring to the irreversible danger of lead exposure (Bellinger, 2013; WHOteam, 2015). 

On the biological and cellular level, the direct effects of lead toxicity include mitochondrial 

damage, oxidative stress (Adonaylo and Oteiza, 1999), disruption of calcium homeostasis 

(Lafond et al., 2004), alteration of neurotransmitter release, altered function of neurotransmitter 

and receptors (Suszkiw, 2004), and apoptosis (Oberto et al., 1996).  
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Lead’s ability to mimic as calcium makes it able to cross the blood brain barrier (BBB) 

(Bradbury and Deane, 1992). The effects of lead on neurotransmission include damage of 

synapses, alteration of neurotransmitter receptors and causing apoptosis or necrosis in 

dopamine systems (Jabłońska et al., 1994). The molecular targets and genetic mechanisms of 

lead remain unclear, though N-methyl-D-aspartic acid receptors (NMDAR) have been believed 

to contribute to Pb neurotoxicity at the synapse level (Baranowska-Bosiacka I., 2012). NMDAR 

play a key role in synapses and also in the process of learning and memory. They were 

believed to become excessive stimulated by Pb toxicity and this led to excess calcium flow-in 

thorough NMDAR, which could lead to lethal damage to the neurons (Marchetti and Gavazzo, 

2005; Baranowska-Bosiacka I., 2012). 

Single Nucleotide Polymorphisms (SNPs) 

The DNA is transcribed into single-stranded RNAs and then the RNAs, after splicing, are 

used as templates for synthesizing proteins. During this fundamental process, known as the 

central dogma of molecular biology, there are numerous factors influencing the protein function, 

such as DNA sequence variation. Single nucleotide polymorphisms, frequently called SNPs, are 

the most common type of genetic variation. Each SNP, by definition, represents a difference in a 

single DNA nucleotide. For example, most individuals might have base G at a specific genomic 

location, but a small population has base A instead. There are approximately 10 million SNPs in 

the human genome that have been characterized in whole genome sequencing projects, such 

as the 1000 genome project (Siva, 2008). Although most SNPs are believed to have no effects 

on health, some of these genetic variations cause an increased susceptibility to diseases, such 

as sickle-cell anemia and cystic fibrosis. SNPs may also reveal an individual’s susceptibility to 

environmental toxic factors, an increased risk of developing certain diseases, and an atypical 

response to particular medical treatments or drugs (Squassina et al., 2010). SNPs can also be 
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used to trace evolutionary ancestries. Studies working on association of genome and disease 

outcomes lays the foundation for future individualized therapy, which is also called personalized 

medicine (Squassina et al., 2010).  

Studies that correlate SNPs and diseases are called genome-wide association studies, 

and are also known as GWAS (pronounced “GeeWass”). However, researchers have also 

started to examine the correlation between SNPs and global gene expression profiles, or more 

precisely, steady state mRNA levels (Majewski and Pastinen, 2011). 

Expression QTLs 

One of the biggest challenges in biology is to understand how genetic variation alters 

gene expression, which is also known as genetical genomics (Mackay et al., 2009; Massouras 

et al., 2012; Lagarrigue et al., 2013). Genetics of gene expression has been studied in various 

species, such as maize (Schadt et al., 2003), yeast (Brem et al., 2002; Yvert et al., 2003; Bing 

N., 2005; Brem et al., 2005), roundworms (Francesconi and Lehner, 2014), flies (Hirsch et al., 

2009; Massouras et al., 2012), mice (Schadt et al., 2003; Huang et al., 2009)  and humans 

(Schadt et al., 2003; Mangravite et al., 2013; Zhang et al., 2014). Expression Quantitative Trait 

Loci (eQTL) analyses, which search for genomic loci that are responsible for the differential 

gene expression levels, has shed light on the genetic structure of transcriptional regulation. The 

first achievement in this field was seen in the budding yeast, where differential gene expression 

was shown to be segregated by parental genotypes (Brem et al., 2002).  

Significant eQTLs were often categorized into two sub-groups: cis-eQTLs and trans-

eQTLs. By their classical definitions, cis-eQTLs refer to genetic variants that affect a locus 

expression only on the same haplotype, while trans-eQTLs affect both haplotypes (Benzer, 

1955; Hasin-Brumshtein et al., 2014). A haplotype is defined as a set of SNPs on one 

chromosome that occur together because they are tightly linked and, therefore, are from one 
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parent. Such information is critical for investigating the genetics of common diseases, such as 

those investigated in humans by the International Hapmap Project (Gibbs et al., 2003). 

Accordingly, cis-eQTLs tend to be “local”—near the locus of the gene encoding the regulated 

transcript, while trans-eQTLs tend to be “distant”—away from the locus of the regulator (Benzer, 

1955; Hasin-Brumshtein et al., 2014).  

During the past several years, multiple cis-eQTLs were detected in human 

lymphoblastoid cell lines (Pickrell et al., 2010; Lappalainen et al., 2013; Mangravite et al., 2013). 

Several disease—specific cis-eQTLs were also detected, one of which proved the correlation 

between a statin-related eQTL for the gene glycine amidinotransferase (GATM) and statin-

induced myopathy (Mangravite et al., 2013).  

In contrast to the high production of cis-eQTLs, fewer trans-eQTLs were identified, let 

alone disease-specific trans-eQTLs. One of the most mysterious types of eQTLs are trans-

eQTL hotspots, where one single location is associated with the regulation of multiple genes, 

regardless of their transcript locations (Mangravite et al., 2013). The existence of trans-eQTL 

hotspots were previously confirmed in budding yeast in 2003, where the gene Antagonist of 

Mitotic Exit Network 1 (AMN1) was shown to trans-regulate a cluster of 12 downstream genes, 

irrespective of their transcript distances and located throughout the yeast genome. Trans-eQTL 

hotspots are usually described as being eQTL in trans-regulatory factors, such as transcription 

factors or signaling proteins, but these types of eQTLs have been hard to identify outside of 

yeast, and require further study.  

Gene Expression Studies: RNA-seq and Microarrays 

RNA-seq has been considered as a revolutionary tool for transcriptomics (Wang et al., 

2009). This technology converts tissue RNAs to a library of DNA fragments with adaptors 

attached to the ends that hybridize to flow cells for next-generation DNA sequencing, such as 
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with the HiSeq2500 in the Wayne State University Applied Technology Genomics Core. Each 

fragment, up to 600 million at a time, is directly sequenced in a high-throughput manner. But 

before RNA-Seq, gene expression studies were mostly performed by hybridization-based 

microarrays. This microarray technology uses a collection of microscopic DNA spots, which 

contain DNA sequences that are complementary to the mRNA, to measure the expression 

profiles of large numbers of genes simultaneously.  

Microarrays are a robust reliable method proven over decades. Furthermore, they are 

often more economical than Next Generation Sequencing (NGS) and have a well-established 

protocol for processing the data. Microarrays also have a significant advantage when working 

with a large number of samples. On the other hand, the advantage of RNA-seq lies in its 

independence to prior sequence knowledge. This enables the detection of structural variations 

such as alternative splicing and novel transcripts. Although both platforms include robustness 

and high-reproducibility, RNA-seq suffers less from numerous biases as well as background 

noise when measuring low abundance transcripts. For microarrays, studies have observed a 

sharp rise of false positives when thousands of genes were processed simultaneously (Xiao et 

al., 2002; Fadiel and Naftolin, 2003) and the sources of these biases are not yet well 

understood. For RNA-seq, the technology is inherently more sensitive in detecting low 

expression values since each transcript is sequenced individually. 

In this chapter, we use the RNA-sequencing technology to quantify gene expression 

profiles and compare it with our previous microarray data (Ruden D.M., 2009b). 

Previous Lab Experiments 

In order to better understand how lead plays a role as a neurotoxin, our lab utilizes the 

Drosophila melanogaster model to study the effects of developmental lead exposure on steady-

state mRNA levels in adult brains in order to identify lead-responsive genes. Our lab has 
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already shown that Drosophila fed with 250 µM lead acetate in standard fly food, which results 

in lead levels of 50-100µg/dL in tissue, results in gene expression (Ruden D.M., 2009b), 

synaptic (He et al., 2009), and behavioral (Hirsh H.V., 2009) changes. We have previously 

found that lower lead levels in the food, i.e. 50 µM lead acetate, altered the uniformity of the 

synaptic match between the size of the motor neuron terminal and muscle fibers at larval 

neuromuscular junctions (Morley E.J., 2003) and resulted in behavioral changes including 

courtship (Hirsch et al., 1995) and locomotor activity (Hirsch et al., 2003). In a recent study on 

Detroit children, our laboratory has also shown that lead exposure could have multigenerational 

epigenetic effects (Sen et al., 2015). We have also found that lead exposure in human 

embryonic stem cells can affect DNA methylation and hydroxymethylation at specific genes. 

However, identifying the genetic mechanism of lead induced neurotoxicity is facilitated by more 

detailed studies of gene regulatory networks in model organisms.  

In a precursor paper, which was published in 2009, our lab performed eQTL analyses of 

microarray data by comparing Pb-treated whole males to the control ones. In that paper, we 

identified 12 genomic regions (5 in the control males and 7 in the Pb-treated males), which we 

called “transbands” or “trans-eQTL hotspots” because many genes were affected by a single 

locus and perhaps the locus contains potential lead-responsive master regulatory genes (Ruden 

D.M., 2009b). While it was an intriguing result, this analysis only utilized 92 genotype markers, 

and was performed prior to the complete genome sequencing of Drosophila. A further limitation 

of the earlier study was that each of the 12 trans-eQTL hotspots could only be restricted to a 

region of 5 centi-Morgans (cM), which hinders the ability to fine map the targeted genomic 

location, identify and verify potentially master regulatory genes. 

In order to extend the earlier study, and to further validate the existence of the detected 

12 trans-eQTL hotspots, our lab used another set of the Drosophila recombinant inbred lines 
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(RILs) for this study, the Drosophila Synthetic Population Resource (DSPR), to collect additional 

expression analyses. In this chapter, we used RNA-seq and focused on genomic information on 

11768 genomic markers (King et al., 2012). Each sample from the DSPR was a mosaic of eight 

parental strains, which were from different geographic locations and should include a large 

collection of genetic variance. By using this information, we were able to restrict the regulatory 

genomic regions within 10kb. In this chapter, we present the results of these findings and 

provide further validation of the existence of lead-responsive trans-eQTL hotspots.  

Methods 

Genotype Data 

The 8 founder strains of Drosophila Synthetic Population Resource (DSPR) and their 

recombinant inbred lines (RILs) were kindly provided by Dr. Stuart Macdonald from the 

University of Kansas and Dr. Anthony Long from the University of California, Irvine. The RILs 

were started with eight founder strains, A1- A8 that were of diverse geographic origins (Table 

S1) and may include a great deal of the genetic variation in the Drosophila species (King et al., 

2012). Strains were first intercrossed, A1 was crossed with A2, A2 was crossed with A3, and 

this crossing went on until A7 was crossed with A8 (King et al., 2012). 10 F1 flies per genotype 

per sex were mixed altogether and continued to produce offspring (King et al., 2012). Until the 

50th generation of crossing, offspring were separated and another ~25 generations of sibling 

inbreeding made the finished DSPR A2 subpopulation ~800 RILs contain only 1% of 

heterozygous founder genotype (King et al., 2012).  

The DSPR constructed 96-plexed restriction-site associated DNA (RAD) libraries, which 

further resulted in the revelation of 10,275 SNPs (King et al., 2012). They used the hidden 

Markov model (HMM) to convert the SNP data to estimate the probability of the underlying 

founder genotype for the Drosophila genome (genotyping error rate: 0.5%) (King et al., 2012). 
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Since all RIL samples are mostly homozygous and they have in total eight parents (marked as 

A1-A8), there are at most eight possible genomic origins for any genomic position. The 

Drosophila genome (only chromosome X, 2, and 3; chromosome 4 was excluded) was divided 

into 11,769 10kb genomic segments, resulting in 11,768 markers at the junction point. The 

genotype dataset shows the founder name of each of the 11768 markers for all the samples. 

Sample Preparation 

All the fly stocks were reared at 25° C in 35 ml vial containing standard Drosophila 10 ml 

medium. To cause lead-poisoning, medium was mixed with 250 µM PbAc for lead-containing 

medium or 250 µM NaAc for control. This results in the Drosophila head containing 50-100 

µg/dL lead (Ruden D.M., 2009b). Next, 79 randomly selected DSPR samples were fed, from 

egg to adult, either control food or lead-containing food. We did not have any technical or 

biological replicates in this experiment, since we prefer the maximum inclusion of RILs. 

Fifty heads of adult male flies (5-10 days old) in each of the 79 strains were collected 

and TruSeq Cluster RNA sample prep kit from Illumina was used to prepare the samples. 1µg of 

RNA was used after RNA isolation. The High Sensitivity D1K ScreenTape on the Agilent 

TapeStation instrument and quantitative PCR on the QuantStudio 12K Flex were used to make 

sure the quality of library. RNA expression analyses were performed with fifty-cycle paired-end 

RNA-seq on the Hiseq2000™ instrument from Illumina. General read quality was verified using 

FastQC (Andrews, 2010). The RNA-seq raw data are available on the NCBI GEO accession: 

GSE83141. 

Expression Profiling  

Tophat2 (V2.0.8) was used to map reads against the known Drosophila Melanogaster 

(UCSC/dm3) transcriptome (Kim et al., 2013). The transcript assembly tool Cufflinks and 

differential expression tool Cuffdiff were utilized for gene discovery and comprehensive 
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expression analysis of RNA-seq data (Trapnell C., 2012). After the Cufflink pipeline, we 

assembled all the expression data and quantile normalized to the overall average empirical 

distribution across all samples first, then across all genes. Gene Ontology 

(http://geneontology.org/) (Ashburner et al., 2000; Consortium, 2015) was used for the GO 

enrichment analysis for the differentially expressed genes upon Pb exposure and GO categories 

of “Molecular Function” and “Biological Process” were selected.  

Genome-Wide eQTL Mapping 

A data analysis R package called DSPRqtlDataA 

(http://wfitch.bio.uci.edu/~dspr/index.html) was provided by the DSPR group (King et al., 2012). 

We used it to extract the genotype dataset indicating the genomic origin at 10,768 loci for each 

sample we used. Similar to what the DSPR group did, we performed a multiple regression—

regressing gene expression profiles on the eight additive genotype probabilities with zero 

covariate. We also used the LOD score (Manichaikul et al., 2009) to quantify the likelihood of 

association between 10,768 genomic locations and 13,381 gene expression profiles among 79 

paired samples (one control and one Pb-treated).  

H0: Y = µ + ε 

H: Y = µ + ∑Gi + ε 

Where µ is the grand mean, Gi is the ith parental genotype probability. 

The LOD score, which is the logarithm of odds base 10, is a statistical test commonly 

used for linkage and association analysis. It compares the likelihood of obtaining the test data if 

the two loci are indeed associated to the likelihood of observing the same data purely by 

chance. Positive LOD score favors the presence of correlation. 

LOD score = log10(Likelihood of H1) –log10(Likelihood of H0) 
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After obtaining the LOD score for each genomic location and each gene expression 

level, we determined the significance threshold for each gene via 1000 permutations on its 

expression levels.  

The expression levels for each gene were extracted, shuffled randomly, and the LOD 

score was calculated in the same way as described above but using the shuffled data. A null 

distribution could be formed by the one thousand LOD scores, resulted from the thousand times 

of shuffling.  

        𝑝 − value for gene x = !"#$%&' !" !"#$%&'&()*+ !"# !"#$% !"#$%"!" ! !"#$%&$' !"#$%"&'  
!"!#$ !"#$%& !" !"#$%&'&()*+ (!!""")

 

After obtaining all the p-values, we defined eQTLs as p-value ≤ 0.05, including cis-eQTL 

as genes that have significant associations with at least one genomic location within 1Mb 

geographic distance and trans-eQTL as genes that have significant associations with genomic 

locations outside of 1Mb. For the trans-eQTL hotspot threshold, we randomly shuffled the eQTL 

results 10,000 times. From each of the randomization, the highest number of associated genes 

for an eQTL was recorded. The p-value was generated based on the distribution of the total 

10,000 recordings. Then qvalue function in R was used to transform p-value into FDR. 

SVA was later used to control for potential confounders (Pickrell et al., 2010) and the 

following model 

H0: Y = µ +  ∑Gi  + E +  ε 

H: Y = µ + ∑Gi + E + ∑Gi *E +  ε 

Where E represents two conditions: control or lead-treated. 

Common Motif Search by Genomatix 

The list of 89 anticipated downstream genes at Chr2L: 6,250,000 was entered as the 

input of Gene2Promoter (Retrieval and analysis of promoters). Among 100 loci containing 201 

transcripts, 100 were selected, including both experimentally verified 5’ complete transcripts and 
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some annotated transcripts that have not yet been confirmed. Sequences of these promoters 

were extracted by using Genomatix optimized length (500 bp upstream of the first transcription 

start site (TSS) and 100 bp downstream of last TSS). After obtaining all the promoter sequences 

of the downstream genes, CoreSearch (Wolfertstetter et al., 1996) was used to define unknown 

common motifs among the sequences. Tomtom was used to search for matches with the 

existing pool of motif databases (Gupta et al., 2007). Interactions browser on the flybase 

website was used in search for protein-protein interactions (http://flybase.org/cgi-

bin/get_interactions.html) (Tweedie et al., 2009). 

Results  

Differential Expression Caused by Chronic Lead Poisoning 

In order to further understand the trans-eQTL hotspots detected in our 2009 microarray 

paper (Ruden et al., 2009), we collected RNA-seq data on 79 recombinant inbred lines (RILs) 

selected from The Drosophila Synthetic Population Resource (DSPR) (King et al., 2012). The 

DSPR was composed of a panel of ~1600 Drosophila lines (King et al., 2012). The lines were 

initiated with eight parental strains A1-A8 that are from different geographic origins and should 

include a good mix of genetic variation in the Drosophila species which were intercrossed for 50 

generations and then inbred for another 25 (King et al., 2012). We randomly selected 79 lines 

from the synthetic population and offspring were fed, from egg to adult, either control food 

(containing 250 µM NaAc) or Pb-treated food (containing 250µM PbAc). 50 heads of adult male 

flies (5-10 days old) in each strain were collected and RNA expression analyses were 

performed (See Methods). As a result, we had 79 control and 79 Pb-treated RNA-seq samples 

which we could analyze for differentially expressed genes.  

Dramatic effects were seen on gene expression profiles after lead poisoning: 2698 

among the 13381 expressed genes, including 68 exhibiting over 50% of change in expression 
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levels.  (20%, false discovery rate (FDR) < 0.0001, 0.214 ± 0.223 mean absolute log2 change ± 

s.d.) (Fig.1). Among the responders, 2038 genes were upregulated after lead treatment, among 

which nervous system development and neurogenesis were the topmost enriched gene 

ontology (GO) categories (Fig.2). On the other hand, among the 660 genes downregulated upon 

Pb exposure, developmental growth and synaptic target recognition were among the most 

enriched GO categories (Fig.2). These results were consistent with our expectation, since only 

Drosophila heads were collected on sample preparation and the neurotransmitters at the 

synaptic levels has long been considered as the main targets for lead neurotoxicity 

(Baranowska-Bosiacka I., 2012). Genes that are metal responders, like Metallothionein B, C, D 

and E, and neuro-related genes like Nacalpha, dhd, and RpS5b were among the strongest 

responders. N-Methyl-D-Aspartate 1 (NMDA1) and its Receptors (NMDAR1 and NMDAR2), 

previously identified as Pb target at the synapse level (Marchetti and Gavazzo, 2005; 

Baranowska-Bosiacka I., 2012), were also among the differentially expressed genes (NMDA1: 

logFC=7.809, FDR=0.014; NMDAR1: logFC=1.004, FDR=0.005; NMDAR2: logFC=-1.150, 

FDR=0.004).  
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Fig.1. Lead (Pb) Treatment Altered the Gene Expression Levels among Drosophila 
Melanogaster Male Head Samples. MA plots for change in gene expression (n=2698) 
comparing Pb-treated (n=79) with control-treated samples (n=79). M= log2(P/C), A= 
(log2(C)+log2(P))/2, where P: Pb-treated FPKM values; C: control FPKM values. Red dots: 
genes expression profiles were not significantly changed; Cyan dots: genes expressions were 
significantly changed (0.214 ± 0.223 mean log2 fold changes s.d, FDR<0.0001).  
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Fig.2. Gene Ontology Enrichment Analysis of Lead Treatment in the Drosophila 
Melanogaster Male Head Samples. Gene Ontology (http://geneontology.org/) was used to 
detect over represented GO categories in RNA-seq data (FDR <0.0001). Y-axis shows the 
minus logarithm of each significant GO ID’s p-value (after Bonferroni correction for multiple 
testing). Significant GO IDs among upregulated genes after Pb exposure were colored in red 
and GO ID among downregulated genes in green. GO IDs related with synapses and neuronal 
functions were highlighted in bold.  
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Identification of Cis- and Trans- eQTLs  

After identifying genes that were affected by Pb treatment, we worked on identifying 

expression quantitative trait loci (eQTLs)— the genomic region with genetic variants that affect 

gene expression levels. In most eQTL studies (Ruden et al., 2009; Mangravite et al., 2013), 

SNPs were used to represent the genotype. However, in our study, each sample was a mosaic 

of the eight parental lines (A1-A8) (details in Method) and we used directly the information 

provided by the DSPR— the genetic contribution by the parental genotypes, which means the 

parental line a certain genomic region of the offspring was inherited from. With this type of 

genotype information, the eQTL was defined as a genomic location where gene expressions 

were associated with differential parental contributions.  

The readily available DSPR R package was designed for single gene eQTL search 

(http://wfitch.bio.uci.edu/~dspr/Tools/Tutorial/index.html); therefore, we re-structured it to allow 

multiple gene eQTL searches (see Methods). Using the newly modified R program, we 

computed the LOD score to quantify the likelihood of association between the genomic locations 

and the gene expressions, and 1000 permutations were run to estimate the threshold of 

statistical significance (see Methods). In total, 1,536 cis-eQTLs (FDR ≤ 10%) and 952 trans-

eQTLs were identified (1000 permutation threshold at 0.05). Among the genes with cis-eQTLs, 

774 genes were shared among control and lead-treated, along with 547 control-specific and 215 

lead-specific (Fig.3A).  

One example of the control-specific cis-eQTL was shown in Fig.4A. In this example, left 

two panels showed all the lodscores for the gene CG2807 at each of the 11768 evenly divided 

genomic locations for both control and Pb-treated status. The high peak in the control panel 

indicated strong association with the corresponding genomic location on the x-axis but this 

signal disappeared after lead treatment (Fig.4A, second to the left panel). We also noticed that 
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the strongest peak overlapped with the transcript location (green dashed line); this indicated that 

the gene CG2807 is not only a control-specific eQTL but also a cis-eQTL.  

In order to further explore the parental contribution of the genomic location at the highest 

peak in control, we sub-grouped the gene expression levels according to their parental 

genotypes at this associated location (Chr2L: 1,770,000) and used a boxplot to show their 

expression levels (Fig. 4B, right two panels). From the figure, samples originally from A2, A3 

and A4 have significantly higher expression levels than samples from A5, A6 and A7 in control, 

while this difference was greatly reduced in Pb-treated samples. This allelic heterogeneity was 

also widely observed in DSPR female head eQTL study (King et al., 2014).  

In addition to the control-specific cis-eQTLs, there is an example of Pb-specific cis-eQTL 

in Fig.4C. On the other hand, among the 952 genes with trans-eQTLs, 50 genes were shared 

among control and lead-treated, along with 645 control-specific and 257 Pb-treated (Fig.3B, one 

examples of control-specific trans-eQTL in Fig.4D and another Pb-specific trans-eQTL in 

Fig.4E). 
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Fig.3. Venn Diagrams Demonstrating Overlaps between Control-specific eQTLs and Pb-
specific eQTLs. (A) gene numbers for cis-eQTLs. (B) gene numbers for trans-eQTLs. 
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Fig.4. Examples of cis- and trans- eQTLs. (A) shows one example of control-specific cis-
eQTL. In the left two panels, the x-axis represents the Drosophila genomic locations and y-axis 
represents the lodscore of the gene. The red horizontal line indicates the threshold for p-value 
to be 0.05 after 1000 permutation test.  The green dash vertical line indicates the location of the 
gene. If it overlaps with the peak, which suggests strong correlation between the gene and the 
corresponding location, it is referred as a cis-eQTL, meaning the regulator is near the 
downstream gene. Since this phenomena only occurred in control data but not in Pb-treated 
one, this genomic location Chr2L: 1,770,000 is a control-specific cis-eQTL for gene CG2807. In 
the right two panels, association of the Chr2L: 1,770,000 location, which has the highest 
lodscore in control samples, with quantile normalized CG2807 expression levels following 
control (p-value< 0.001) and Pb-treated (not significant). Samples originally from A2, A3 and A4 
parental lines exhibited higher expression levels, while samples from A5, A6 and A7 parental 
lines showed lower expression levels in control. After lead was introduced, this phenomenon 
disappeared.  (B) is one example of Pb-specific cis-eQTL. (C) is one example of control-specific 
trans-eQTL. (D) is one example of Pb- specific trans-eQTL. 
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After searching for all possible associations among 13,381 gene expression profiles against 

11,768 genomic locations, we visualized the entire significant associations with an eQTL map 

(Fig.5A for control panel and Fig.5B for Pb-treated panel). Each of the colored dots represents 

one significant correlation between the genetic location displayed on the x-axis and the gene on 

the y-axis (significance at 0.05 for 1000 permutation). There was a prominent diagonal band in 

both control and lead-treated map. It showed that transcript locations of these genes were 

similar to their eQTL locations, thus the cluster of genes belong to cis-eQTLs. On the other 

hand, there were also some distinguished vertical bands, indicating any one of these genomic 

regions was associated with a list of genes across the entire chromosome. These genomic loci 

with a high density of eQTLs are usually called trans-eQTL hotspots (Joo et al., 2014; King et 

al., 2014) or trans-eQTL bands (Rockman M.V., 2006). In total, we got 6 control and 7 Pb-

treated trans-eQTL hotspots (Fig.6, Table 1). Among them, 4 were Pb-sensitive hotspots: 3 Pb-

specific and 1 control-specific (Table 1, highlighted in red). 
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Fig.5. eQTL Map. All significant associations were shown in an eQTL map with eQTL locations 
(genomic loci) on x-axis and transcript locations (gene loci) on y-axis. (A) Associations for 
control samples only. Each of the green dots indicates a significant association between the 
corresponding eQTL location and the gene at the transcript location. (B) eQTL Interactive Map 
for Pb-treated samples only. Each of the red dots indicates a significant signal. (C) eQTL 
Interactive Map combining both control and Pb-treated samples. Shared significant signals were 
marked as brown, with Pb-specific signals as red and control-specific ones as green. 
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Fig.6. The Distribution of Trans-eQTL Hotspots among the Drosophila Genome. 6 for 
control (green, marked above the genomic axis) and 7 for Pb-treated (red, marked under the 
genomic axis) trans-eQTL hotspots were detected in total. Chromosome 4 and heterochromatic 
chromosomes were excluded due to lack of genomic information from the DSPR group. None of 
the trans-eQTL hotspots were detected in Chromosome X. Numbers on top/ bottom of each 
trans-eQTL hotspot represented the number of associated genes at the peak locus.  
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Table 1. Detailed Information about the Pb-responsive Trans-eQTL hotpots.  

status chr start end 
Length 
(Mb) peak location 

#genes @ 
peak 

 
p-value 

control chr2L 18510000 20590000 2.08 20330000 91 

<0.0001 

control chr2R 100000 1090000 0.99 1050000;1080000 63 0.001 

control chr2R 1370000 1820000 0.45 1600000 69 0.0001 

control chr3L 20170000 20200000 0.03 20170000-20200000 62 

0.001 

control chr3L 20780000 24360000 3.58  22680000;22690000…… 82 

<0.0001 

control chr3R 90000 5780000 4.88 5090000 97 <0.0001 

Pb-
treated chr2L 6130000 7060000 0.93 6250000 89 

<0.0001 

Pb-
treated chr2L 16790000 21240000 4.45 20290000 88 

<0.0001 

Pb-
treated chr2R 1590000 1990000 0.4 1640000;1650000 66 

0.0001 

Pb-
treated chr2R 4540000 5110000 0.57 4570000 65 

0.0001 

Pb-
treated chr2R 9290000 9400000 0.11 9290000;9320000 68 

0.0001 

Pb-
treated chr3L 20160000 24360000 3.20 

22360000; 22370000; 
22380000 73 

<0.0001 

Pb-
treated chr3R 90000 5590000 4.69 590000; 600000; 610000 86 

<0.0001 
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Genetic Dissection of the Trans-eQTL Hotspots 

To further explore the mechanism of the trans-eQTL hotspot, we first looked at the 

stable trans-eQTL hotspots, meaning signals that were present in both control and Pb-treated 

(one example in Fig.7). A heatmap was used to show the regulations of the associated genes in 

the presence or absence of chronic lead exposure. To do this, expression profiles of all the 

associated genes were extracted into a subset and the hierarchical clustering analysis (Eisen et 

al., 1998) was used to display the expression patterns (Fig.7). In Fig.7, all associated genes 

were arranged based on the similarity of their expression pattern making genes (right list) 

divided into three groups (J1, J2 and J3) and samples (bottom list) into three groups (B1, B2 

and B3). Interestingly, the segregation of samples according to the expression pattern actually 

overlapped with the genetic contribution of the parental genotypes (the color-coded bar above 

the heatmap): samples originally from A4 (dark green) showed lower J3 expression pattern and 

higher J1+J2 expression pattern, while samples from A5 (light blue) had the exact opposite 

pattern.  
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Fig.7. Stable Trans-eQTL Hotspot at Chr2R: 1,050,000 (p-value < 0.05 at 1000 permutation 
threshold). Hierarchical clustering analysis was done according to the expression profiles of the 
Chr2R: 1,050,000 associated genes (p-value < 0.05). On the heatmap plotted by using the 
control expression data, the bottom list indicates all the sample names and the right list 
indicates all the associated genes. Color-coded bar above the heatmap and below the 
dendrogram indicates the original parent of each sample listed at the bottom at this specific 
location. Color legend in the color-coded bar: red: A1, green: A2, blue: A3, dark green: A4, light 
blue: A5, purple: A6, gold: A7, darkgray: A8. 
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Not only did we find this correlation between expression traits and parental contribution 

at the stable trans-eQTL hotspots, but also in lead-responsive ones. Here, as an example for 

Pb-sensitive trans-eQTL hotspots, we used the one that located at Chr2L: 6,250,000 that 

contains and contained 89 associated genes. The hierarchical clustering analysis was also used 

to present expression data graphically (Fig.8) and it showed that all the hotspot-associated 

genes could be divided into two groups (G1, G2) and all the samples could be divided into two 

groups (S1, S2) according to the gene expression profiles. It appeared that genes from G1 

exhibited lower expression levels in sample group S1 but higher in S2, while genes belong to 

the G2 presented the opposite phenomena. With the help of the color coded bar on top of the 

heatmap, a clear segregation was shown among samples based on their original parents: the 

expression pattern of samples from A2 (green) and A3 (blue) was in contrast with that of 

samples from A6 (purple) and A7 (gold).  

However, not all parents show differential influences on downstream genes, such as A1 

(red) and A4 (dark green). This suggested that different strains of Drosophila species might 

respond differently to Pb exposure and this might be reflected by regulation of some key eQTL 

loci and their downstream gene expression levels. Compared with the Pb-specific trans-eQTL 

hotspot that contained 89 associated genes, only 28 associated genes were observed at the 

same genomic locus in control status. If we kept the order of gene list and sample list in the Pb-

treated heatmap (Fig.8 left panel) but replaced with corresponding control data, we would find 

an entire disruption of the expression pattern present upon lead exposure (Fig.8 right panel). 

This confirmed that this hotspot at Chr2L: 6,250,000 locus is a lead-responsive trans-eQTL 

hotspot.  
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Fig.8. Trans-eQTL hotspot at Chr2L: 6,250,000 (p-value < 0.05). Hierarchical clustering 
analysis was done according to the expression profiles of the Chr2L: 6,250,000 associated 
genes (p-value < 0.05). On the left heatmap plotted by using the Pb-specific trans-eQTL, the 
bottom list indicates all the sample names and the right list indicates all the associated genes. 
The heatmap on the right was created by maintaining the order of the sample names and 
associated gene names in the Pb-treated plot on the left but replacing with control expression 
data. The expression patterns formed in Pb-treated data were totally disrupted after replacing 
with the control data, suggesting this trans-eQTL hotspot could only be observed in expression 
levels after lead exposure. Color-coded bar above the heatmap and below the dendrogram 
indicates the original parent of each sample listed at the bottom at this specific location. Color 
legend in the color-coded bar: red: A1, green: A2, blue: A3, dark green: A4, light blue: A5, 
purple: A6, gold: A7, darkgray: A8. 
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In order to take a deeper look at the genes associated with the Chr2L: 6,250,000 

genomic location upon lead exposure, we searched for their GO enrichment categories (Attrill et 

al., 2015). Those 89 associated genes could actually be categorized into 5 groups: neuro-

related, metal-related, response to stimuli and immune system, other metabolic processes, and 

unknown function (Table 2A). We noticed that genes in G1 were mainly related to neuronal 

function (18 out of 61, 30%), while genes in G2 were mostly metabolic processes (18 out of 28, 

64%) (see details in Table 2A).  We also recognized that genes in G1 (52 out of 61, 85%) were 

Pb-specific trans-eQTLs at Chr2L: 6,250,000 (Table 2B, examples in Fig.4D & Fig.9A, B), while 

genes in G2 (22 out of 28, 78%) were more likely in close proximity of the eQTL locus and were 

stable cis-eQTLs (Table 2B, examples in Fig.9C, D). Among the rest of the signals, a few were 

Pb-specific cis-eQTLs (Table 2B, one example from G1 in Fig.9E and one example from G2 in 

Fig.4B).	
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Table 2. (A) GO Function Categories for the Associated Genes at Chr: 6,250,000. (B) eQTL 
Types for Genes at G1 and G2. 
 
(A)  
Group Neuron- 

related 
Metal ion 
binding 

Response to 
stimuli, immune 
system, cell 
death, DNA 
damage 

Other 
metabolic 
processes 

Behavior 
(mating, 
etc.) 

Unknown 
function 

total 

G1 18 (30%) 7 (11%) 12 (20%) 13 (21%) 1 (1%) 10 (16%) 61 
G2 1 (3%) 1 (3%) 2 (7%) 18 (64%) 1 (3%) 5 (18%) 28 
total 19 (21%) 8 (9%) 14 (16%) 31 (35%) 2 (2%) 15 (17%) 89 
 
(B) 
Group Both control & 

Pb-treated Cis-
eQTL at 
Chr2L:6,250,000  

Pb-specific 
Trans-eQTL at 
Chr2L:6,250,000  

Pb-specific cis-
eQTL at 
Chr2L:6,250,000  

others total 

G1 3 (5%) 52 (85%) 2 (3%) 4 (6%) 61 
G2 22 (78%) 4 (14%) 2 (7%) 0 28 
total 25 (28%) 56 (63%) 4 (4%) 4 (4%) 89 
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Fig.9. Examples of Trans-eQTL Associated Genes.  (A) shows one example of lead-specific 
trans-eQTL in G1 family. In the left two panels, the x-axis represents the Drosophila genomic 
locations and y-axis represents the lodscore of the gene. The red horizontal line indicates the 
threshold for p-value to be 0.05 after 1000 permutation test.  The green dash vertical line 
indicates the location of the gene. (B) is another example of lead-specific trans-eQTLs in G1 
family. (C) is one example of stable cis-eQTLs. (D) is another example of stable cis-eQTLs. (E) 
is an example of the Pb-specific cis-eQTLs in G1 family. 
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It has long been proposed that a transcription factor is a natural candidate for being the 

regulator of the trans-eQTL hotspots (Yvert et al., 2003). It has been hypothesized that the 

eQTL location may have influence over the affinity of a certain linked transcription factor and the 

transcription factor has multiple associations with downstream genes. This hypothesis serves as 

a perfect candidate explanation for trans-eQTL hotspots. However, it has been controversial 

ever since and not many studies have discussed about it. Yvert et al. (Yvert et al., 2003) 

mentioned that few trans variations have strong correlations with known or predicted 

transcription factors in their yeast research.  

In our case, we used the CoreSearch in German Genomatix software, a tool that could 

define unknown common motifs from a set of unaligned DNA sequences (Wolfertstetter et al., 

1996), to search for common nucleotide motifs of the downstream genes associated with the 

same trans-eQTL hotspot. 100 promoter sequences of all the 89 downstream genes at Chr2L: 

6,250,000 were extracted by Gene2Promoter, a tool in Genomatix to provide promoter 

sequences of all genes annotated from the genomes (http://www.genomatix.com). As a result, 

AAAAAYA (Y: C or T) was the common motif generated after searching among the 100 

promoter sequences (Fig.10). We used Tomtom, a software for quantifying similarity between 

query motif and motifs from the exisiting databases to see whether this identified motif would 

match with any of the previously discovered ones (Gupta et al., 2007).  

It turned out that hunchback (hb) has a shared motif with the AAAAAYA (p-value= 8.11e-

04, Fig.10D). hb, as a protein-coding gene, locates at Chr3R and its main function involves 

generations of neurons and neuroblast fate determination (Isshiki et al., 2001; Tran et al., 2010; 

Attrill et al., 2015). hb, as a transcription factor, has been shown to be necessary for regulation 

of the first-born glial cell fates, leading a sequence of transcription factors at the cell fate 

specification stage (Isshiki et al., 2001). Interestingly, hb was not detected to be an eQTL by 
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itself (Fig.10E, F). There were also no known protein-protein interactions between hb and any of 

the associated genes at the trans-eQTL hotspot. 
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Fig.10. Common Motif Shared by Associated Genes with the Trans-eQTL Hotspot. (A) The 
distribution and frequencies of each basepairs. (B) The nucleotide distribution matrix shows the 
nucleotide frequencies observed in aligned binding sites of the corresponding transcription 
factor. Basepairs in red indicate high information content, which means the matrix exhibits a 
high conservation (> 60%) at this position. Genomatix made the basepairs in capital letters 
denote the core sequence used by MatInspector. The core sequence of a matrix is defined as 
the (usually 4) highest conserved, consecutive positions of the matrix. (C) Common motif of the 
associated genes at the trans-eQTL hotspot. (D) The common motif detected in (C) resembles 
hb with p-value to be 8.11e-04. (E) - (F): The lodscore plot of hunchback. 
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Our next consideration was to verify the existence of the trans-eQTL hotspot at Chr2L: 

6,250,000. For eQTL analysis, one of the major concern is the expression heterogeneity (EH) 

(Pickrell et al., 2010; Joo et al., 2014). We used Surrogate Variable Analysis (SVA) to test 

whether the trans-eQTL hotspot would still be considered as significant after controlling EH 

(Pickrell et al., 2010). As a result, the trans-eQTL hotspot at Chr2L: 6,250,000 locus was still 

among the strong peaks after the SVA processing (Fig.11). This indicated that the Pb-sensitive 

trans-eQTL hotspot could be considered as a true positive result. 
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Fig.11. Trans-eQTL Hotspots Targeted after the SVA. Numbers of significant associated 
genes identified after SVA process (p-value ≤ 0.05). The lead-responsive trans-eQTL hotspot at 
Chr2L: 6,250,000 (red dashed line) was still one of the strong peaks after SVA processing. 
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After controling for the EH, another way to validate the trans-eQTL hotspots is by using 

another set of Pb-treated expression data and see if similar expression pattern existed as well. 

Our lab had another set of lead-treated Drosophila microarray data back in 2009 (Ruden et al., 

2009). There are some differences between the microarray data and current RNA-seq data. For 

example, the microarray dataset was a two-way eQTL analysis, meaning the samples were 

originally from two parents (comparison in experimental design in Table 3). Also, in the previous 

study we analyzed RNA isolated from whole adult males, whereas, this study analyzed RNA 

isolated from adult male heads. 

We applied our current eQTL-detection method to the microarray expression dataset 

and as a result, we found that marker 27B, which is the closest to Chr2L: 6,250,000, showed no 

significant trans-eQTL signals (data not shown). However, when we extracted all expression 

levels of the available microarray probes for the 89 genes identified by the current RNA-seq 

data and ran for the hierarchical clustering heatmap at 27B, we found similar expression 

segregation patterns as previously. In the left panel (Pb-treated) of Fig.12, genes could be 

roughly divided into three groups: g1, g2 and g3 according to the similarity of the expression 

pattern. We noticed that most genes from g1 (10 out of 12, 83.3%) and g3 (29 out of 34, 85.3%) 

belong to RNA-seq G1 group (Fig.8), while most genes from g2 (20 out of 29, 70.0%) were the 

same as G2. The right panel of Fig.12 was created by maintaining the order of the samples at 

the bottom and associated genes on the right but replacing Pb-treated expression data with 

control ones.  

Similar to the results in the RNA-seq data, this heatmap produced by the microarray 

data showed that the expression patterns formed in Pb-treated status were disrupted in control, 

suggesting the genes forming expression patterns could only be observed in expression levels 

after lead exposure, but not in control. This also indicated that the segregated expression 
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patterns at the eQTL locus were found in both RNA-seq data and in microarray data. However, 

the color-coded bar above the microarray heatmap, which indicated the original parent of each 

sample at this 27B location, showed no significant difference based on parental choice. This 

showed that the two parental lines—Oregon R and Russian 2B (no overlaps with the eight 

parental lines used in RNA-seq), have no differential influence over associated gene expression 

profiles at this 27B (Chr2L: 6,250,000) locus, explaining why this location was not detected as a 

trans-eQTL hotspot in the microarray experiment in the first place. This also demonstrates that 

the eight-way analysis which includes more genetic variations is more robust and should include 

more eQTLs than the two-way analysis. 
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Table 3. Experimental Design and Result Comparison between the Microarray in 2009 
and RNA-seq in 2012. 
 
 Microarray in 2009 RNA-seq in 2012 
Geno Types two-way eight-way 
Genomic information SNPs Genomic origins 
Numbers of Genomic 
locations 

92 (markers) 11768 

Numbers of Samples in each 
condition 

75 79 

Numbers of Genes detected ~14000 (18,952 probesets) 13381 
Condition mixing 250µM lead acetate in the fly food as lead exposure 
Sample collected Whole male Drosophila Male Drosophila head 
Technique used Microarray RNA sequencing  
The criteria for significant 
eQTLs 

The 1000 permutation LOD 
scores have a P-value of less 
than 0.0001 

The 1000 permutation LOD 
scores have a P-value of less 
than 0.05 

Definition of cis-eQTL Significant eQTLs within a 
5cM sliding window 

Significant eQTLs within 1Mb 

Definition of trans-eQTL Significant eQTLs outside the 
5cM sliding window 

Significant eQTLs outside the 
1Mb 

Definition of trans-eQTL 
hotspots 

96 probesets in a 5cM window 50 genes in a 1Mb window 

Numbers of cis-eQTLs 
detected* 
Control-only|overlap|Pb-only 

405 440 544 547 774 215 

Numbers of trans-eQTLs 
detected* 
Control-only|overlap|Pb-only 

948 357 1191 645 50 257 

*Please note that the numbers of cis- and trans- eQTL detected in microarray assay or in RNA-
seq assay are not comparable due to differential genomic information.   
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Fig.12. Trans-eQTL hotspot at 27E (nearest to Chr2L: 6,250,000). Expression levels of 
candidate downstream genes detected with RNA-seq were extracted from the microarray data 
and hierarchical clustering analysis was performed accordingly. In the left panel (Pb-treated), 
genes could be roughly divided into three groups: g1, g2 and g3. Most genes from g1 and g3 
belong to G1 from the RNA-seq data, while most genes from g2 were the same as G2. The right 
heatmap was created by keeping the order of the sample names and associated gene names in 
the Pb-treated plot on the right but replacing with control expression data. The expression 
patterns formed in Pb-treated data disappeared in control data, suggesting the genes forming 
expression patterns could only be observed in expression levels after lead exposure. Color-
coded bar above the heatmap and below the dendrogram indicates the original parent of each 
sample listed at the bottom at this specific location. Color legend in the Color-coded bar above 
the heatmap: red: Oregon R (ORE), green: Russian 2B (2B), blue: heterozygous. No 
segregation based on the parental origin was seen, suggesting these two parental lines do not 
differ in expression levels and this also explains why this has not been detected as a trans-
eQTL hotspot in the microarray data. 
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Further Analyses on the Microarray Data 

In 2009, we used R/qtl (Broman et al., 2003) to estimate the presence of eQTLs on the 

set of lead-treated Drosophila microarray (Ruden et al., 2009). As a result, our lab found 5 

control trans-eQTL hotspots and 7 lead-treated ones (Experimental design and Result 

Comparison shown in Table 3) (Ruden et al., 2009). Due to the limited amount of the genotype 

information, which contained only 92 markers throughout the entire genome, our lab was, at the 

time, unable to shorten the trans-eQTL hotspots within 5cM. In order to further explore the 

mysterious trans-eQTL hotspots, our lab performed this RNA-seq analysis on Pb-treated 

Drosophila male heads.  

After identifying eQTLs by using the method provided by the DSPR group, we applied 

the same one on the previous microarray data. As a result, we found 7 overlapping results with 

that detected in the 2009 paper (Table 4). Among the overlaps, one lead-responsive trans-eQTL 

hotspots was at the cytological location of 30AB and was within 1.7 Mb from the trans-eQTL 

hotspot we found at Chr2L: 6,250,000 in the RNA-seq data. In order to see whether these two 

trans-eQTL hotspots are somewhat related, we used a venngraph to compare their associated 

genes. Although both Chr2L: 6,250,000 in RNA-seq and 30AB in microarray showed nice 

expression segregation between samples originally from their parents (Fig.8 for Chr2L: 

6,250,000 RNA-seq data & Fig.13 for 30AB microarray data), we found no overlaps between the 

two lists of associated genes. We concluded that the two trans-eQTL hotspots searched in the 

different expression data sets should actually be considered as two different ones.  
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Table 4. Seven out of the Twelve Trans-eQTL Hotspots were Reproduced by our Current 
Method to Target Trans-eQTLs. 
 
	 Control Pb-treated 

Results in 2009  Results using 
current method 

Results in 2009 Results using 
current method 

3E 	 	 ✓	 ✓	
27B ✓ ✓ 	 	
30AB 	 	 ✓	 ✓	
50DF ✓	 	 	 	
57F 	 	 ✓	 	
63A 	 	 ✓	 	
65A 	 	 ✓	 ✓	
70C ✓	 	 	 	
72A ✓	 	 	 	
73D ✓ ✓ ✓	 ✓	
77E  ✓ ✓	 ✓	
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Fig.13. Significant Trans-eQTL Hotspot Detected after Reanalyzing Microarray Data.  
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Preliminary Deficiency Validation Test 

After the detection of trans-eQTL hotspot, we used w1118 flies that cause deficiency in the 

proposed trans-eQTL area and see if we could detect the differential expression levels of these 

potential downstream genes. We tried with three genomic regions (Bloomington Deficiency Kits 

stk# 24124, 9605, 8835, 8674, and 9341), most of which are shorter than 1Mb long (Cook et al., 

2012; Roote and Russell, 2012).  RNA-seq was then performed after lead exposure to test the 

potential downstream effects. Unfortunately, none of the deficiencies showed any significant 

influence on the potential downstream genes. In the future analyses, we would use the highly 

efficient genome modification method—CRISPER-CAS9 (Clustered regularly interspaced short 

palindromic repeats) technique to pinpoint the trans-eQTL hotspots in the eight parental strains 

instead of using the wildtype (Yu et al., 2013). 

Discussion & Conclusion 

Here we investigated gene expression in Drosophila heads from 79 different 8-way RILs 

to identify lead-responsive cis- and trans- eQTLs. We also went one step further to provide the 

further evidence for the existence of the controversial lead-responsive trans-eQTL hotspots. 

With the help of the clustering analyses, we confirmed that the expression traits of the progeny 

could be sub-grouped based on the genetic contributions of the parents.  

There are several advantages of eQTL analyses using RNA-seq compared with using 

microarrays. First, RNA-seq avoids the possibility of false positive reads due to the limitation of 

the microarray technology (Xiao et al., 2002; Fadiel and Naftolin, 2003). Second, the abundant 

genotype information, which includes 11768 underlying parental haplotype structures, makes it 

more likely to pinpoint the eQTL loci, while the previous microarray eQTL analysis only contain 

92 genomic markers, each of which was at least 5cM wide (Ruden et al., 2009). Third, this time 
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we have more parental lines involved (eight-way versus two-way), which should include more 

genetic variations that are present in Drosophila species.  

Another criterion worth mentioning is the sample size. Due to the financial concerns, we 

could only afford to analyze 79 RNA-seq samples with no replicates. We might have identified 

more trans-eQTL hotspots if we included more samples. 

The DSPR group mapped genome-wide expression variation in 2014. They generated 

an eQTL interactive map and found two trans-eQTL hotspots. However, they did not have an 

exposure model, and the trans-eQTL did not overlap with the hotspots identified in our study. 

This is not surprising since their experiments included more genetic differences: heterozygotes 

from parental population groups A and B (both A1, A2 and B1, B2) (King et al., 2014), while we 

only considered a subset of homozygotes in one parental subgroup, which is A2. Furthermore, 

they worked with heterozygotes due to inbreeding depression (King et al., 2014) and we did not 

have that problem when processing the fly lines. Therefore, our genetic information contains 

only A1-A8 and each of our samples was a homozygous mosaic of the eight parental lines, 

while samples used in the DSPR paper were originally from 16 founders A1-A8, B1-B8 (line A8 

and B8 are actually the same and therefore were also referred to as AB8) and were 

heterozygous. In their paper, there was another finding that most of their eQTLs were multi-

allelic (King et al., 2014) and same phenomena have been observed in our study.  

In contrast to the DSPR group, we included developmental lead poisoning as another 

perturbation and searched for lead-responsive eQTLs. We have successfully identified lead-

responsive trans-eQTL hotspots. We found that some new trans-eQTL hotspots were formed in 

response to lead poisoning and some existing trans-eQTL hotspots disappeared after lead 

treatment. The clustering analysis has shown the samples from different parental genetic origins 

responded differently in downstream gene expression profiles before or after lead exposure. 
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Previous papers have hypothesized that gene expression profiling patterns associated with 

trans-eQTL hotspots reflect biological pathways (Wu C., 2008); however, we ended up with no 

enriched pathways among the associated genes. Our next step will be to identify and knock 

down genes responsible for the trans-eQTL hotspots and to determine if the expression levels 

of the proposed downstream genes are influenced. We also plan to include longevity and 

behavioral test to determine if the differential expression changes in different parental strains 

could provide a protective mechanism to respond to lead poisoning. 

In conclusion, RNA-seq technology is a powerful tool in obtaining genome-wide expression 

profiles and identifying cis-and trans-eQTLs. The hierarchical clustering analyses display the 

expression patterns of the eQTL-associated genes and show that they segregate by genotype. 

We have successfully made progress in understanding how trans-eQTL hotspots alter the 

susceptibility to lead exposure, opening up a gate towards the mechanisms of trans-eQTL 

hotspots, as well as the neurotoxicity of lead. 
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CHAPTER 2: SPLICING QTLS	

Introduction  

Alternative Splicing 

After the discovery of splicing in the Adenovirus hexon gene in 1977 (Sambrook, 1977), 

Walter Gilbert proposed in 1978 that different combinations of exons and introns, namely 

“alternative splicing” (AS), could produce different mRNA isoforms of a gene (Gilbert, 1978; 

Modrek and Lee, 2002). The disparity between the expected 150,000 or more human genes 

and the surprising actual report of under 32,000 later suggested an underestimated role for 

alternative splicing in the production of an increased variety of mRNAs and proteins (Pennisi, 

2000; Venter et al., 2001). It has been estimated that AS is a crucial form of gene regulation 

affecting about 60-90% of human genes (Modrek and Lee, 2002) and over 40% of Drosophila 

genes (Stolc et al., 2004). Mutations that affect mRNA splicing and AS were also considered to 

be highly linked with disease occurrences (Singh and Cooper, 2012). It has also been estimated 

that 15% of human disease mutations lie within splicing sites and 22% of disease-related SNPs 

may affect splicing (Krawczak et al., 2007; Lim et al., 2011). 

The Drosophila Dscam gene exemplifies one of the most extreme examples of 

alternative splicing. Dscam (Down Syndrome Cell Adhesion Molecule) is a cell surface protein 

which gives rise to over 30,000 potential alternatively spliced isoforms in the Drosophila nervous 

system (Schmucker and Flanagan, 2004). The human homologue DSCAM was first discovered 

as a candidate disease gene for the central and peripheral nervous system defects associated 

with Down syndrome (Yamakawa et al., 1998). The Drosophila Dscam was later found to have 

the extreme structural diversity and is essential for neural circuit assembly (Schmucker et al., 

2000; Hattori et al., 2007). Its diversity allowed each neuron to have a unique pattern on its cell 

membrane, which made self-recognition possible (Lawrence Zipursky and Grueber, 2013; 
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Armitage et al., 2015). It has also been shown that Dscam regulated interactions between 

neurons through isoform-specific homophilic binding or repulsion (Wojtowicz et al., 2004; 

Tadros et al., 2016). Its role in the insect cellular immune system has also been suggested 

since 2005 (Watson et al., 2005). Even after years of study, many questions remain 

unanswered, such as how Dscam mRNA isoforms are selectively expressed and how 

homophilic interactions are translated into binding or repulsing responses during neurogenesis 

(Schmucker and Flanagan, 2004). 

Splicing Quantitative Trait Locus (sQTLs) 

A quantitative trait locus (QTL) is a sequence of DNA (the locus) that is associated with 

variation in a phenotype (the quantitative trait) (Miles and Wayne, 2008). Splicing QTLs (sQTLs) 

distinguish relative splicing isoform abundance. Significant sQTLs could be categorized into two 

groups: cis- and trans-sQTLs. In the previous chapter, we described the identification of cis- and 

trans-eQTLs in Drosophila (Ruden D.M., 2009a). In this chapter, we focus on cis- and trans- 

sQTLs. By definition, cis-sQTLs refer to genetic variants that affect the splicing event of a locus 

only on the same haplotype, while trans-sQTLs affect both haplotypes (Benzer, 1955; Hasin-

Brumshtein et al., 2014). Therefore, cis-sQTLs tend to be “local”, near the locus of the gene 

encoding the regulated transcript, while trans-sQTLs tend to be “distant”, away from the 

regulator (Benzer, 1955; Hasin-Brumshtein et al., 2014). For the purposes of this paper, an 

sQTL is defined as genetic variants that are associated with changes in the splicing ratios of 

transcripts (Monlong et al., 2014). 

Our previous expression QTL (eQTL) study was a gene expression analysis on a lead-

treated Drosophila model (Ruden D.M., 2009b). In our original study, we identified both lead-

responsive cis-eQTLs and trans-eQTLs using Affymetrix Drosophila gene expression 

microarrays (Ruden D.M., 2009b). We also identified a QTL linked with developmental 
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behavioral effects of lead exposure (Hirsch et al., 2009).  In this current study, in order to 

identify sQTLs, which cannot be identified with standard gene-expression microarrays, we used 

the RNA-seq analysis. This original eQTL study was on a recombinant inbred line (RIL) set 

derived from two parental lines. In this current study, we used another set of RILs provided by 

the Drosophila Synthetic Population Resource (DSPR) (King et al., 2012). This time, we used 

the same RNA-seq data to explore Pb-responsive sQTLs. We found hundreds of positive 

candidate sQTLs, among which Dscam1 was one of the most significant sQTLs both on the 

exon level and on the transcript level.  

Methods 

Genotyping and Sample Collection 

The genotyping and sample collection protocol were the same as the methods section 

shown in Chapter 1. The RNA-seq data are publicly available on the NCBI GEO accession: 

GSE83141. 

Expression Quantification 

RNA-seq reads were mapped to the UCSC/dm3 D.melanogaster references genome 

(track: Flybase Genes) using TopHat (Karolchik et al., 2004; Kim et al., 2013).  

We first used the coverageBED function in BEDTools to quantify raw counts of the 

exons and transcripts (Quinlan and Hall, 2010). In our second trial, htseq was used (Anders et 

al., 2014).   

ANOVA Test 

All analyses were performed in R. After calculating division of exon reads to its 

corresponding transcript reads, quantile normalized, and confounding factors were removed by 

PCA (n.pc=3), we used the following model to target sQTLs: 

H0: Y = µ +  ε 
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H: Y = µ + ∑Gi *E +  ε 

Where µ is the grand mean, Gi is the ith parental genotype probability, E represents two 

environmental conditions: control or lead-treated. 

For transcript expression levels, transcript reads were quantile normalized, and 

confounding factors were removed by PCA (n.pc=4). Expression data for genes that have more 

than one isoform were subgrouped (n=3975).  

H0: Y = µ + ∑Gi*Iso+ ∑Gi *E +  ε 

H: Y = µ +  ∑Gi  *E *Iso +  ε 

Where µ is the grand mean, Iso is isoform type, Gi is the ith parental genotype 

probability, E represents two environmental conditions: control or lead-treated. 

Definition of the Significant sQTLs 

After obtaining all the p-values indicating the likelihood of association between each 

genomic location and each transcript, qvalue function in R (library: qvalue) was used to 

transform the p-values into FDRs and we defined p-values ≤ 0.0001, corresponding FDRs ≤ 

0.39, as significant signals. We next randomly shuffled the entire set of sQTL results 10,000 

times. From each of the randomization, the highest number of associated genes detected for a 

significant sQTL was recorded. The p-value for the trans-eQTL hotspot at Chr3L:18,810,000 

locus was generated based on the distribution of the total 10,000 recordings.  

GO Enrichment Analysis 

Upload/Convert ID tool from Flybase.org was used to convert the annotation symbols 

into official symbols (Tweedie et al., 2009). GOseq (Young et al., 2010; Young et al., 2012), 

which is an R package for conducting GO analysis for RNA-seq data, was used for the GO 

enrichment analysis for the differentially expressed genes upon Pb exposure and GO categories 

of  “Molecular Function” and “Biological Process” were selected. 
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Results  

After identifying eQTLs affected by Pb treatment, we tried to identify sQTLs – the 

genomic regions where genetic variants affect splicing events. In most sQTL studies 

(Lappalainen et al., 2013; Battle et al., 2014; Kurmangaliyev et al., 2015; Ongen and 

Dermitzakis, 2015), SNPs were used to represent the genotype information. However, in our 

study, each fly line was a mosaic of the eight parental lines (A1-A8) (Fig.14A) and the genetic 

contribution by the parental genotypes, meaning the parental line a certain genomic region of 

the offspring was inherited from. With this type of genotype information, the sQTL was defined 

as a genomic locus where gene expressions were associated with differential parental 

contribution.  
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Fig.14. Workflow in Search for sQTLs. A) The design of the recombinant inbred lines. Strains 
were initiated with eight founder strains A1-A8 with a diverse geographic origin. In the first 
generation, lines were intercrossed with each other and 10 F1 flies per genotype per sex were 
mixed together to establish the next generation. This mix went on until the 50th generation when 
flies were separated and Inbreeding continued for another 25 generations, leading to a total of 
~1600 completed recombinant inbred lines. After samples were treated with or without Pb 
treatment, RNA-seq analysis was performed and two methods were used to target sQTLs: B) 
the fraction of exon reads to transcript reads and C) Isoform dosage.  
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Reads were mapped by Tophat2 (Trapnell C., 2012; Kim et al., 2013) and quantified to exons 

and transcripts by Htseq (Anders et al., 2014).	We used two ways to detect sQTLs: 1) use the 

fraction of reads in a transcript that falls in a given exon as the quantitative trait and run for 

fraction QTLs; 2) directly target the differential transcript dosage in the same gene (Fig.14C, D, 

see Methods). Exon/transcript fraction considers changes within each exon, while the second 

method captures events where both exon reads and transcript reads change in the same 

direction, probably missed by the first method.  

Here, we used ANOVA analysis to detect Pb-responsive sQTLs (see Methods) (Hoaglin 

and Welsch, 1978). In total, we obtained 974 Pb-responsive sQTLs by calculating 

exon/transcript fraction and 374 by isoform dosage, with 112 shared ones (p-value <0.0001, 

FDR <0.39) (Fig.15A). We then used the Alternative splicing transcriptional landscape 

visualization tool (ASTALAVISTA) (Foissac and Sammeth, 2007) to determine the types of 

events represented by the entire set of sQTLs (Fig.15B). The four main AS types were intron 

retention (n=994), Alternative donor splicing (n=908), exon skipping (n=596) and alternative 

acceptor splicing (n=572) (Fig.15C).  

The identified sQTLs were also run through a GO enrichment analysis. The top enriched 

categories were “behavior” (p-value = 9.66E-09) and “response to stimulus” (p-value = 4.43E-

06) and “calcium channel activity” (p-value = 5.87E-06) (Fig.15C). Neural developmental related 

GO categories were also among the most significant: “mushroom body development” (p-value = 

4.17E-05), “synaptic vesicle transport” (p-value = 4.17E-05), “non-associative learning” (p-value 

=2.70E-04), “brain development” (p-value =3.75E-04), and “regulation of nervous system 

development” (p-value =4.44E-04) (Fig.15C). Other over-represented GO categories include 

“locomotory behavior” (p-value = 2.46E-05), “response to chemical” (p-value = 1.50E-04), and 

“mRNA 3’-UTR binding” (p-value =3.45E-04) (Fig.15C). 
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Fig.15. Properties of the Pb-responsive sQTLs. A) Venn graph showing the overlapping 
sQTLs targeted between two methods. B) Numbers of different AS events found among the 
identified sQTLs. C) GO enrichment analysis for the sQTLs. 
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One of the most significant sQTLs is Dscam1 linked with Chr3L:2,790,000 (q-

value<1.11E-08). Transcript expressions of samples originally from the A3 parent were altered 

significantly, while others were not (Fig.16). In samples that were inherited from A3 parent at 

Chr3L:2,790,000 locus, RT, RU and RW isoforms were upregulated after developmental lead 

exposure, RV was downregulated, while RAE was remained steadily. This suggested that A3 

strain responded to lead poisoning differently from the rest of the parents by altered usage of 

the various isoforms.  In order to explore deeper into the exon usage in Dscam1, we used the 

Integrative Genomics Viewer (IGV) (Thorvaldsdóttir et al., 2013), which is a popular visualization 

tool for integrated genomic data. We noticed that reads for exon 7, 8, 10 and 11 were increased 

after lead treatment in A3 samples, while in other samples the expression change was in the 

reversed direction (Fig.17). However, not all exons were affected in the same way. For exon 18 

and 19, read counts in all samples were upregulated after lead exposure (Fig.17). It is possible 

that differential exon usage resulting from lead neurotoxicity is a part of the compensatory 

pathway after lead poisoning, but future research is needed to tackle this problem. 	
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Fig.16. Differential Dscam1 Isoform Expression Upon Lead Exposure among Samples 
Originally from Chr3L: 2,790,000. Green boxes represent control samples. Red boxes 
represent Pb-treated samples. 
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Fig.17. Visualization of Different Exon Usage by RNA-seq w/o Lead Treatment. Sample 22, 
one of the examples that were originally from A5 strain at Chr3L: 2,790,000, has reduced 
expression of exon 7, 8, 10 and 11 with lead treatment, while sample 382, one of the examples 
that were originally from A3 at the same locus, has increased expression of the same exons. 
However, not all exons share the same feature. For exon 18 and 19, read counts were all 
increased after lead exposure. 
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We then visualized the distribution of all the significant associations with a 

comprehensive sQTL map (Fig.18). Each dot represents one significant association between 

the genetic locus shown on the x-axis and the transcript on the y-axis (FDR <0.39). Among the 

scattered dots, there was one prominent vertical band consisting of a high density of dots, 

demonstrating that the genomic locus was associated with a cluster of transcripts regardless of 

their loci. This is similar to what has been observed in many eQTL studies, where genomic loci 

linked with abnormally high numbers of eQTLs were called trans-eQTL hotspots (Joo et al., 

2014; King et al., 2014) or trans-eQTL bands (Rockman M.V., 2006). More interestingly, this 

trans-sQTL hotspot at Chr3L:18,810,000 locus is Pb-responsive (p-value < 1E-10).  

  



www.manaraa.com

59	

	

	

	

Fig.18. The Comprehensive sQTL Map. A) All significant signals were shown and each dot 
represents one association between the eQTL location on the x-axis and transcript location on 
the y-axis. B) The sum of all the associated dots for each genomic location. 
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Here, a heatmap by hierarchical clustering analysis was used to visualize the expression 

of the downstream genes w/o lead poisoning at this trans-sQTL hotspot (Fig.19) (Eisen et al., 

1998). In Fig.19, the entire set of correlated transcripts in each of the 79 samples was clustered 

based on the similarity of their expression profiles. Interestingly, there was a clear segregation 

when the control data was used (Fig.19A), while this expression pattern disappeared by 

replacing with the Pb-treated data (Fig.19B), where both column and row have exactly the same 

order as the control heatmap. Additionally, the color-coded bar on top of each heatmap 

represents each sample’s (sample name at the bottom) original parent at this Chr3L: 

18,810,000 locus.  

Samples originally from grey parent (A8) showed distinct expression patterns from green 

(A2) parents in a majority of the associated transcripts. This suggested that in normal condition, 

A8 have a different expression patterns compared to A2; however, this difference was 

suppressed or disrupted after lead poisoning. We also noticed that “cation channel activity” was 

the topmost GO category (p-value= 8.73E-06) for the list of 129 genes. And there is only one 

protein-coding gene bypassing this Chr3L: 18,810,000 locus—CG14073. This is also among the 

129 assoicated sQTLs: Fig.20 showed differential expression of isoform RB after lead exposure 

for samples originally from A2. Currently, there is no known molecular function for this gene but 

experimental evidence has shown that it is involved in the wing disc dorsal/ventral pattern 

formation (Bejarano et al., 2008). When we expanded the search to the genomic region of 

Chr3L:18,800,000~ 18,820,000, the region was estimated to have at least 50 donor sites and 92 

acceptor sites by the Berkeley Drosophila Genome Project (Reese et al., 1997). 
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Fig.19. The Heatmap of Trans-sQTL Hotspot. A) All associated signals represented in control 
expression data; B) Heatmap generated by maintaining both column and row name order in 
control but replacing with Pb-treated data. The list of ordered isoforms on the right side was in 
Table 5. Color legend: red: A1 parent, green: A2, blue: A3, dark green: A4, light blue: A5, 
purple: A6, gold: A7, darkgray: A8. 
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Fig.20. Slight Decreased Expression of CG14073-RB after Lead Exposure for Samples 
Originally from A2.  
 

 

  



www.manaraa.com

63	

	

	

	

Discussions & Conclusions 

In this paper, we used two methods to detect Pb-responsive sQTLs. The first one, which 

is the fraction of exon reads to the transcript reads, searches splicing events on exon levels and 

all types of genetic–related AS events that cause change either in exon or in transcript after lead 

treatment will be selected. The other method compares the transcript counts among isoforms. It 

is on the transcript levels and will select those have differential isoform dosage after lead 

exposure.  

The combination of two methods resulted in 1236 significant Pb-responsive sQTLs. 

Generally, to target sQTLs, there are five major approaches (Fig.21): 1) simply use exon 

expression profiles as the quantitative trait and this could also be referred to as exon QTLs 

(Montgomery et al., 2010; Lappalainen et al., 2013; Gymrek, 2014); 2) the proportion of each 

transcript quantification of the sum of all transcripts per gene (Lappalainen et al., 2013; Battle et 

al., 2014; Gymrek, 2014); 3) Percent spliced in (PSI) (Lappalainen et al., 2013; Zhao et al., 

2013; Gymrek, 2014; Kurmangaliyev et al., 2015); 4) use the fraction of reads in a gene that 

falls in a given exon as the phenotype, as used in this paper (Pickrell J.K., 2010; Gymrek, 

2014); 5) Multivariate approaches, such as sQTLseekeR (Gymrek, 2014; Monlong et al., 2014).  

The sQTLseekeR is a multivariate model called for each gene consisting of the relative 

abundance of each transcript (Monlong et al., 2014). It calculated the variability of splicing ratios 

of a gene across samples by using a MANOVA-like distance-based approach and then 

compared the variability of the splicing ratios within genotypes with the variability among 

genotypes. We have run our data through the sQTLseekeR pipeline. However, no significant 

association was returned. One of the potential explanation for this result is that the sQTLseekeR 

was originally designed to incorporate the genotypes as SNP information (0 for ref/ref, 1 for 

ref/mutated, 2 for mutated/mutated), but our genotype data, which represent the original parents 
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of evenly distributed genomic locations (A1-A8, representing 8 parents), pose potential 

challenges to process the data (Monlong et al., 2014).  
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Fig.21. Major Methods for Detecting sQTLs. 
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Most of the sQTL studies were performed in human cell lines. One study by 

Kurmangaliyev et. al., which has claimed to be the first sQTL study in Drosophila, searched for 

genotype-specific alternative splicing donor/ acceptor sites by using 81 Drosophila hybrid strains 

generated by crossing natural populations to a single inbred reference line (Kurmangaliyev et 

al., 2015). They found 59 AS donor/ acceptor events by performing 120,240 association tests 

(Kurmangaliyev et al., 2015). In our study, we detected 1236 Pb-responsive AS events by 

running >1,255,422,008 association tests (106681 exon/transcript reads *11768 genomic loci) 

and our detection should not only include alternative donor/ acceptor splicing but also other 

types of AS events.  

The identification of Dscam1 as one of the most significant sQTLs helps to further 

understand the isoform usage and changes after Pb exposure. Schumucher et al. have shown 

that the overexpression of one Dscam isoform resulted in strong dominant phenotypes in 

mushroom body neurons (Schmucker et al., 2000). In 2004, Schumucher and Flanagan 

suggested either that different neurons express different Dscam isoforms or that isoforms need 

to be present at a precise concentration or a certain development time period (Schmucker and 

Flanagan, 2004).  

The diversity of Dscam isoforms has been shown to allow neurons having differential 

patterns on its cell membrane and interacting through isoform-specific hemophilic binding 

(Wojtowicz et al., 2004; Lawrence Zipursky and Grueber, 2013; Armitage et al., 2015; Tadros et 

al., 2016). In our analysis, we found expression alterations in Dscam1 both on the exon level 

and on the transcript level. However, we have few ideas on how to interpret: why such changes 

occurred after lead exposure and how this could contribute to the neural developmental 

damage. Future studies might consider combining sQTL analysis with other molecular and 

cellular experiments in order to better understand the lead neurotoxicology. 
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Our study is the first to link sQTL analysis with an environmental toxin in Drosophila. 

However, there are limitations in our study: 1) the RNA-seq data were prepared as 50 bp 

paired-end. However, 100 bp paired-end reads were considered to enhance splicing junction 

detection significantly (Chhangawala et al., 2015). 2) Both methods in this paper rely on known 

transcript annotation and transcript level quantifications.  

In conclusion, we have shown that sQTL analysis is a useful way in understanding 

alternative splicing mechanisms and the neuro-toxicology of environmental toxin. We 

discovered widespread genetic variation affecting the splicing events. Our characterization of 

causal regulatory variation sheds light on the mechanisms of neurotoxicity of lead, and allows 

us to infer putative causal variants for hundreds of environmental toxic-associated loci. 	
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Table 5. The List of Ordered Isoform after the Hierarchical Clustering Analysis 

[1]	 "CG12052_RZ"	 	 "CG17800_RAA"	 "CG32464_RJ"	 	 "CG32464_RB"	 	 "CG17800_RS"	 	 "CG31716_RE"		
"CG31284_RA"		
		[8]	 "CG1070_RB"	 	 	 "CG32491_RL"	 	 "CG4527_RC"	 	 	 "CG16765_RB"	 	 "CG17800_RBB"	 "CG10693_RB"		
"CG31716_RC"		
	[15]	 "CG1725_RJ"	 	 	 "CG17800_RAI"	 "CG42260_RB"	 	 "CG17800_RAK"	 "CG34373_RH"	 	 "CG33555_RD"		
"CG34416_RK"		
	[22]	 "CG17800_RU"	 	 "CG5020_RJ"	 	 	 "CG10693_RH"	 	 "CG6282_RA"	 	 	 "CG17689_RB"	 	 "CG42275_RD"		
"CG17800_RAM"	
	[29]	 "CG42281_RE"	 	 "CG10693_RA"	 	 "CG33232_RA"	 	 "CG17800_RA"	 	 "CG1725_RC"	 	 	 "CG12052_RU"		
"CG31689_RA"		
	[36]	 "CG32490_RC"	 	 "CG17800_RB"	 	 "CG4894_RA"	 	 	 "CG1725_RD"	 	 	 "CG5640_RC"	 	 	 "CG4821_RB"			
"CG32538_RA"		
	[43]	 "CG12052_RC"	 	 "CG12052_RN"	 	 "CG10693_RC"	 	 "CG16765_RD"	 	 "CG32491_RG"	 	 "CG42275_RE"		
"CG9660_RD"			
	[50]	 "CG14619_RB"	 	 "CG5020_RH"	 	 	 "CG9660_RC"	 	 	 "CG17838_RD"	 	 "CG17838_RA"	 	 "CG33555_RH"		
"CG32464_RR"		
	[57]	 "CG33555_RF"	 	 "CG31349_RC"	 	 "CG10706_RD"	 	 "CG10693_RG"	 	 "CG32158_RE"	 	 "CG17800_RP"		
"CG17800_RD"		
	[64]	 "CG12052_RG"	 	 "CG17800_RK"	 	 "CG32490_RO"	 	 "CG9059_RA"	 	 	 "CG32498_RG"	 	 "CG17800_RT"		
"CG1693_RB"			
	[71]	"CG17800_RAY"	"CG17800_RAC"	"CG10693_RE"	 	"CG12052_RB"	 	"CG17800_RAO"	"CG33555_RB"		
"CG5020_RC"			
	[78]	 "CG4527_RB"	 	 	 "CG17800_RX"	 	 "CG16765_RJ"	 	 "CG10693_RQ"	 	 "CG34412_RI"	 	 "CG17800_RC"		
"CG17800_RAS"	
	[85]	 "CG32158_RB"	 	 "CG4527_RE"	 	 	 "CG31349_RB"	 	 "CG32538_RC"	 	 "CG34416_RF"	 	 "CG17800_RE"		
"CG7029_RC"			
	[92]	 "CG34412_RF"	 	 "CG10693_RO"	 	 "CG17800_RQ"	 	 "CG12052_RT"	 	 "CG1725_RI"	 	 	 "CG17800_RL"		
"CG42275_RG"		
	[99]	 "CG34365_RF"	 	 "CG4894_RD"	 	 	 "CG17800_RAQ"	 "CG32498_RD"	 	 "CG17838_RE"	 	 "CG32464_RH"		
"CG1228_RD"			
[106]	 "CG1725_RB"	 	 	 "CG6671_RA"	 	 	 "CG42403_RB"	 	 "CG8566_RC"	 	 	 "CG33183_RB"	 	 "CG7893_RA"			
"CG12052_RY"		
[113]	"CG17800_RAE"	"CG17800_RBE"	"CG32498_RM"	 	"CG10618_RF"	 	"CG32490_RH"	 	"CG32490_RI"		
"CG12052_RE"		
[120]	"CG17800_RAP"	"CG10693_RK"		"CG32529_RC"		"CG10693_RN"		"CG17800_RAN"	"CG17800_RV"		
"CG32498_RK"		
[127]	 "CG17800_RZ"	 	 "CG32498_RI"	 	 "CG32464_RU"	 	 "CG17800_RAV"	 "CG32158_RF"	 	 "CG7125_RE"			
"CG16765_RK"		
[134]	 "CG42275_RF"	 	 "CG17838_RH"	 	 "CG1725_RE"	 	 	 "CG33989_RE"	 	 "CG17800_RAZ"	 "CG3136_RC"			
"CG17800_RAW"	
[141]	"CG32490_RN"		"CG10706_RC"		"CG7145_RD"			"CG32498_RO"		"CG17800_RN"		"CG17800_RAB"	
"CG17800_RBH"	
[148]	"CG17800_RAF"	"CG17800_RAD"	"CG17800_RAX"	"CG32490_RL"		"CG33232_RC"		"CG31536_RC"		
"CG15072_RC"		
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[155]	 "CG8174_RB"	 	 	 "CG5659_RC"	 	 	 "CG6998_RD"	 	 	 "CG5685_RB"	 	 	 "CG2822_RC"	 	 	 "CG33232_RD"		
"CG32464_RG"		
[162]	 "CG8669_RB"	 	 	 "CG42275_RI"	 	 "CG31349_RI"	 	 "CG32490_RJ"	 	 "CG6703_RD"	 	 	 "CG8385_RA"			
"CG2822_RB"			
[169]	"CG17800_RM"	 	"CG17800_RG"	 	"CG16765_RC"	 	"CG32464_RN"	 	"CG1725_RH"	 	 	"CG11680_RA"		
"CG32498_RJ"		
[176]	 "CG18250_RB"	 	 "CG17838_RB"	 	 "CG17800_RBA"	 "CG17800_RR"	 	 "CG8007_RA"	 	 	 "CG17800_RO"		
"CG32491_RQ"		
[183]	"CG17800_RY"		"CG34416_RL"		"CG34416_RG"		"CG33555_RG"		"CG16765_RG"		"CG17800_RAR"	
"CG32498_RB"		
[190]	"CG10693_RJ"		"CG17800_RAG"	"CG17800_RAU"	"CG17800_RAL"	"CG8174_RC"			"CG17800_RAJ"	
"CG17800_RI"		
[197]	 "CG2225_RF"	 	 	 "CG42274_RF"	 	 "CG10693_RP"	 	 "CG32158_RC"	 	 "CG34365_RE"	 	 "CG10706_RF"		
"CG6703_RA"			
[204]	 "CG32498_RL"	 	 "CG32555_RB"	 	 "CG7029_RB"	 	 	 "CG10377_RB"	 	 "CG17800_RF"	 	 "CG10693_RI"		
"CG34416_RJ"		
[211]	 "CG17800_RW"	 	 "CG17800_RH"	 	 "CG17800_RAT"	 "CG17800_RAH"	 "CG17800_RBD"	
"CG17800_RBC"	"CG2225_RB"			
[218]	 "CG2225_RC"	 	 	 "CG32423_RD"	 	 "CG12052_RM"	 	 "CG9821_RB"	 	 	 "CG32498_RE"	 	 "CG42252_RB"		
"CG17907_RB"		
[225]	 "CG32464_RS"	 	 "CG10693_RL"	 	 "CG10693_RD"	 	 "CG6827_RB"	 	 	 "CG6827_RA"	 	 	 "CG13521_RA"		
"CG9059_RD"			
[232]	 "CG9059_RC"	 	 	 "CG12052_RR"	 	 "CG2225_RE"	 	 	 "CG33989_RD"	 	 "CG34412_RC"	 	 "CG9660_RE"			
"CG34412_RB"		
[239]	 "CG32464_RQ"	 	 "CG34344_RC"	 	 "CG34341_RC"	 	 "CG4527_RD"	 	 	 "CG12690_RA"	 	 "CG13521_RB"		
"CG34412_RG"		
[246]	 "CG5055_RA"	 	 	 "CG32555_RC"	 	 "CG5020_RA"	 	 	 "CG15427_RE"	 	 "CG5060_RA"	 	 	 "CG1063_RA"			
"CG1063_RB"			
[253]	 "CG15427_RC"	 	 "CG17090_RB"	 	 "CG9674_RD"	 	 	 "CG8639_RB"	 	 	 "CG8639_RC"	 	 	 "CG42403_RC"		
"CG4467_RA"			
[260]	 "CG4467_RB"	 	 	 "CG8566_RB"	 	 	 "CG34416_RI"	 	 "CG34344_RA"	 	 "CG9239_RB"	 	 	 "CG9674_RA"			
"CG4821_RA"			
[267]	 "CG6282_RB"	 	 	 "CG8566_RE"	 	 	 "CG8566_RD"	 	 	 "CG34365_RD"	 	 "CG33957_RB"	 	 "CG6671_RC"			
"CG5685_RA"			
[274]	 "CG1070_RA"	 	 	 "CG5627_RB"	 	 	 "CG5627_RA"	 	 	 "CG33183_RA"	 	 "CG32464_RK"	 	 "CG42403_RG"		
"CG33143_RC"		
[281]	 "CG6703_RB"	 	 	 "CG3954_RA"	 	 	 "CG32158_RG"	 	 "CG15427_RA"	 	 "CG15028_RB"	 	 "CG33183_RC"		
"CG32529_RA"		
[288]	 "CG42260_RA"	 	 "CG18250_RC"	 	 "CG9660_RA"	 	 	 "CG5060_RB"	 	 	 "CG42281_RF"	 	 "CG17838_RG"		
"CG33989_RC"		
[295]	 "CG10693_RF"	 	 "CG32464_RD"	 	 "CG42260_RC"	 	 "CG32529_RD"	 	 "CG32809_RB"	 	 "CG17912_RB"		
"CG10693_RM"		
[302]	 "CG18250_RA"	 	 "CG4894_RB"	 	 	 "CG4059_RA"	 	 	 "CG42403_RF"	 	 "CG33989_RF"	 	 "CG1725_RL"			
"CG11206_RD"		
[309]	 "CG5020_RB"	 	 	 "CG4527_RA"	 	 	 "CG4894_RC"	 	 	 "CG10706_RH"	 	 "CG6671_RB"	 	 	 "CG10706_RE"		
"CG17838_RC"		
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[316]	 "CG4059_RB"	 	 	 "CG17838_RF"	 	 "CG12052_RF"	 	 "CG9239_RA"	 	 	 "CG16765_RH"	 	 "CG16765_RF"		
"CG34362_RA"		
[323]	 "CG34362_RB"	 	 "CG34341_RB"	 	 "CG32632_RC"	 	 "CG32538_RB"	 	 "CG32490_RR"	 	 "CG32464_RT"		
"CG32464_RP"		
[330]	 "CG32498_RA"	 	 "CG3136_RA"	 	 	 "CG6998_RB"	 	 	 "CG7125_RD"	 	 	 "CG7125_RC"	 	 	 "CG15009_RC"		
"CG15009_RB"		
[337]	 "CG32464_RM"	 	 "CG33957_RC"	 	 "CG9660_RF"	 	 	 "CG8385_RH"	 	 	 "CG10618_RD"	 	 "CG10618_RE"		
"CG10618_RB"		
[344]	 "CG33555_RE"	 	 "CG5020_RL"	 	 	 "CG31689_RC"	 	 "CG32464_RC"	 	 "CG7145_RB"	 	 	 "CG8385_RI"			
"CG8385_RF"			
[351]	 "CG8983_RB"	 	 	 "CG7145_RA"	 	 	 "CG32158_RD"	 	 "CG10618_RC"	 	 "CG8669_RD"	 	 	 "CG33232_RB"		
"CG33080_RB"		
[358]	 "CG33183_RD"	 	 "CG32491_RAA"	 "CG32491_RM"	 	 "CG34416_RE"	 	 "CG5020_RK"	 	 	 "CG7971_RA"			
"CG7971_RD"			
[365]	 "CG34416_RN"	 	 "CG17912_RA"	 	 "CG12052_RL"	 	 "CG12052_RA"	 	 "CG32491_RT"	 	 "CG12052_RQ"		
"CG12052_RO"		
[372]	 "CG12052_RX"	 	 "CG12052_RW"	 	 "CG32491_RC"	 	 "CG7893_RB"	 	 	 "CG1228_RB"	 	 	 "CG5020_RI"			
"CG34373_RF"		
[379]	 "CG42274_RC"	 	 "CG32491_RH"	 	 "CG10077_RA"	 	 "CG7971_RC"	 	 	 "CG32491_RN"	 	 "CG32491_RP"		
"CG32491_RV"		
[386]	"CG32491_RAB"	"CG32491_RE"	 	"CG32491_RR"	 	"CG32491_RD"	 	"CG32491_RAC"	"CG32491_RF"		
"CG32491_RK"		
[393]	 "CG32491_RX"	 	 "CG32491_RY"	 	 "CG32491_RW"	 	 "CG32491_RZ"	 	 "CG32491_RO"	 	 "CG32491_RS"		
"CG32491_RJ"		
[400]	 "CG32491_RI"	 	 "CG32491_RB"	 	 "CG12052_RD"	 	 "CG31716_RD"	 	 "CG33275_RC"	 	 "CG32490_RA"		
"CG34373_RD"		
[407]	"CG32498_RC"		"CG4821_RC"			"CG42274_RD"		"CG17090_RA"		"CG17800_RBF"	"CG17800_RBG"	
"CG31716_RG"		
[414]	 "CG17800_RJ"	 	 "CG31716_RB"	 	 "CG34416_RM"	 	 "CG4357_RB"	 	 	 "CG34416_RH"	 	 "CG10706_RG"		
"CG8547_RB"			
[421]	 "CG31689_RB"	 	 "CG42275_RB"	 	 "CG32491_RU"	 	 "CG32491_RA"	 	 "CG5685_RC"	 	 	 "CG6282_RC"			
"CG34392_RD"		
[428]	 "CG33275_RB"	 	 "CG32688_RA"	 	 "CG42492_RC"	 	 "CG42275_RC"	 	 "CG34344_RB"	 	 "CG11711_RB"		
"CG11711_RA"		
[435]	 "CG7125_RB"	 	 	 "CG1725_RG"	 	 	 "CG42281_RG"	 	 "CG42281_RH"	 	 "CG6998_RA"	 	 	 "CG12052_RH"		
"CG6998_RC"			
[442]	 "CG14619_RE"	 	 "CG5659_RA"	 	 	 "CG7125_RA"	 	 	 "CG3954_RC"	 	 	 "CG4070_RB"	 	 	 "CG5659_RB"			
"CG32632_RB"		
[449]	 "CG6703_RE"	 	 	 "CG34412_RE"	 	 "CG1725_RK"	 	 	 "CG12690_RB"	 	 "CG42492_RB"	 	 "CG42238_RB"		
"CG1725_RA"			
[456]	 "CG32158_RA"	 	 "CG15072_RA"	 	 "CG9674_RC"	 	 	 "CG9674_RB"	 	 	 "CG1070_RD"	 	 	 "CG32555_RA"		
"CG32498_RN"		
[463]	 "CG33275_RA"	 	 "CG3954_RB"	 	 	 "CG34412_RH"	 	 "CG7029_RA"	 	 	 "CG33555_RC"	 	 "CG13316_RA"		
"CG14619_RA"		
[470]	 "CG12052_RV"	 	 "CG12052_RK"	 	 "CG3136_RB"	 	 	 "CG2225_RA"	 	 	 "CG17907_RA"	 	 "CG10077_RB"		
"CG17342_RB"		
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[477]	 "CG17342_RA"	 	 "CG10706_RA"	 	 "CG33097_RB"	 	 "CG11206_RB"	 	 "CG12052_RJ"	 	 "CG13316_RB"		
"CG11727_RB"		
[484]	 "CG3920_RB"	 	 	 "CG7971_RB"	 	 	 "CG12054_RA"	 	 "CG14619_RC"	 	 "CG34373_RG"	 	 "CG12052_RS"		
"CG17077_RD"		
[491]	 "CG3920_RA"	 	 	 "CG42281_RI"	 	 "CG31716_RA"	 	 "CG6703_RC"	 	 	 "CG2822_RA"	 	 	 "CG14619_RD"		
"CG7029_RD"			
[498]	 "CG6919_RA"	 	 	 "CG42275_RH"	 	 "CG15028_RC"	 	 "CG32498_RF"	 	 "CG10377_RC"	 	 "CG11172_RB"		
"CG8174_RA"			
[505]	 "CG11172_RA"	 	 "CG32423_RA"	 	 "CG32423_RC"	 	 "CG32423_RB"	 	 "CG9821_RA"	 	 	 "CG13316_RC"		
"CG10377_RA"		
[512]	 "CG4070_RA"	 	 	 "CG34365_RC"	 	 "CG42281_RD"	 	 "CG42274_RB"	 	 "CG31349_RF"	 	 "CG31349_RG"		
"CG31349_RH"		
[519]	 "CG31349_RE"	 	 "CG5640_RB"	 	 	 "CG8260_RA"	 	 	 "CG15072_RB"	 	 "CG8260_RB"	 	 	 "CG31284_RB"		
"CG4357_RA"			
[526]	 "CG32464_RO"	 	 "CG32490_RG"	 	 "CG32490_RP"	 	 "CG32490_RM"	 	 "CG6923_RB"	 	 	 "CG5055_RB"			
"CG31729_RA"		
[533]	 "CG31729_RB"	 	 "CG11680_RC"	 	 "CG11680_RB"	 	 "CG16971_RB"	 	 "CG16971_RD"	 	 "CG16971_RC"		
"CG33080_RA"		
[540]	 "CG11711_RD"	 	 "CG1725_RF"	 	 	 "CG6919_RB"	 	 	 "CG8007_RB"	 	 	 "CG34392_RC"	 	 "CG7893_RC"			
"CG11206_RC"		
[547]	 "CG33143_RB"	 	 "CG32688_RB"	 	 "CG32464_RF"	 	 "CG8385_RB"	 	 	 "CG31120_RA"	 	 "CG31120_RB"		
"CG31536_RE"		
[554]	 "CG6016_RB"	 	 	 "CG8983_RA"	 	 	 "CG15009_RA"	 	 "CG16747_RC"	 	 "CG16747_RA"	 	 "CG32464_RA"		
"CG16747_RB"		
[561]	 "CG8385_RE"	 	 	 "CG8385_RC"	 	 	 "CG8669_RA"	 	 	 "CG6923_RA"	 	 	 "CG1228_RC"	 	 	 "CG31689_RD"		
"CG32464_RI"		
[568]	 "CG4821_RD"	 	 	 "CG13784_RB"	 	 "CG13784_RC"	 	 "CG1228_RA"	 	 	 "CG16765_RI"	 	 "CG8547_RA"			
"CG32245_RC"		
[575]	 "CG6016_RA"	 	 	 "CG32490_RQ"	 	 "CG11711_RC"	 	 "CG32245_RB"	 	 "CG32490_RE"	 	 "CG32245_RA"		
"CG5640_RA"			
[582]	 "CG42238_RA"	 	 "CG31284_RC"	 	 "CG32490_RK"	 	 "CG17077_RB"	 	 "CG15427_RD"	 	 "CG1070_RF"			
"CG17689_RA"		
[589]	 "CG9660_RB"	 	 	 "CG11727_RA"	 	 "CG42492_RA"	 	 "CG11206_RA"	 	 "CG42252_RC"	 	 "CG12054_RB"		
"CG1693_RA"			
[596]	 "CG32809_RD"	 	 "CG1070_RC"	 	 	 "CG12052_RI"	 	 "CG12052_RP"	 	 "CG1070_RE"	 	 	 "CG7971_RE"			
"CG42252_RD"		
[603]	"CG31349_RA"		"CG42281_RJ"		"CG17077_RC"		"CG4527_RF"			"CG33097_RA"		"CG34373_RE"	
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CHAPTER 3. CONSENSUS SEQUENCE IN ALTERNATIVE SPLICING  

The almost invariant consensus sequence for mRNA splicing in animals and plants is 

gu_ag, where gu is the splice donor sequence and ag is the splice acceptor sequence. A longer 

splice donor consensus sequence in most mammals is guragu, where r is either g or a (Mount, 

1982; Black, 2003). The splice acceptor consensus sequence is preceded by a branch point 

sequence, which contains an adenine, which is ligated to the 5’ splice site ribonucleotide to form 

the intron lariat, and a polypyrimidine tract (c or u), which is between the branch point and the 

splice acceptor sequence. While the short gu_ag consensus sequence of introns is clearly not 

sufficient to differentiate amongst the multitude of alternative splicing events, surprisingly little is 

known about what other sequence information is required to regulate alternative RNA splicing 

(Ladd and Cooper, 2002; Barash et al., 2010; Witten and Ule, 2011). 

Alternative RNA splicing occurs in almost all human genes and vastly increases the 

number of proteins and transcripts that an organism can produce (Pan et al., 2008; Wang et al., 

2008). Exons that are involved in all types of RNA splicing can be classified into five major 

categories: 1) exons containing alternative 5’ splice sites (A5), 2) exons containing alternative 3’ 

splice sites (A3), 3) retained or invariant exons (R), 4) skipped exons (S), 5) mutually exclusive 

exons (ME) (Ast, 2004; Sugnet et al., 2004). In addition to these five types of exons, there are 

also exons that contain an alternative promoter (APr) and exons that contain an alternative poly 

A (APA) site. Since an intron can be flanked by two exons, APr can only be at the 5’ end, and 

APA can only be at the 3’ end, there are in total 36 possible pair-wise categories that are 

distinguished by the combinations of the above 7 AS types. Here, we present all AS types in the 

form Xa-Xb, where X is one of the seven types of exon, and the Xa exon precedes the Xb exon 

in the same gene. For example, the class A5-A3 is an intron that is flanked by an upstream 

exon with an alternative 5’ splice site and a downstream exon with an alternative 3’ splice site. 
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In Fig.22a, all 4 types of splicing, indicated with dashed lines, would generate introns in the A5-

A3 class. Fig.22b-d show R-R, S-S, and A3-S classes of introns and the consensus sequences 

that are most significantly enriched for these classes of introns. Notice that there are only 36 

possibly combinations for the 7 types of exons rather than 49 (i.e., 72 = 49) because alternative 

poly A (APA) is never first (Xa) and alternative promoter (APr) is never second (Xb) in the Xa-Xb 

nomenclature system. 
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Fig.22. Intron Motifs that Are Over-represented in Four Representative Alternative 
Splicing Classes. Left, diagram of alternative splicing classes A5-A3, R-R, S-S, and A3-S. 
Middle, consensus sequence with most significant p-values for enrichment in this intron class (in 
parenthesis). Right, “logo plot” of consensus sequences. The larger the letter, the more frequent 
the nucleotide. a, A3-A5 (Alternative 5’ splice site followed by an alternative 3’ splice site). b, R-
R (Retained exon followed by another retained exon). c, S-S (Skipped exon followed by another 
skipped exon). d, A3-S (Alternative 3’ splice site followed by a skipped exon). 
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Here we present bioinformatics evidence to support our hypothesis of the 36 different AS 

types with unique consensus sequences. To test this hypothesis, we determined whether the 36 

AS types are enriched for a particular paired consensus sequence(s) that is derived from both 

ends of the intron and flanking exon regions. We first generated a table of paired splice donor 

and acceptor consensus sequences, from the most common to the least common. For statistical 

reasons, we selected an arbitrary cutoff of each paired consensus sequence being represented 

by at least 100 introns. Using a modification of our program SnpEff (Cingolani et al., 2012), 

which classifies sequences in any sequenced genome, we analyzed the genomes of 50 

different plant and animal species.  

The total number of different types of paired consensus sequences ranged from one in 

baker’s yeast, Saccharomyces cerevisiae, guaugu_ag, which has only 282 introns, all of which 

are always flanked by invariant exons (R-R), to 95 different consensus sequences in the 

marmoset, which has 184,882 introns. The average number of introns in the 50 species that we 

analyzed was 116,288 with a standard deviation of 45,266. Almost half of the animals’ genomes 

we analyzed have between 40 and 50 different types of paired consensus sequences with at 

least 100 introns in each type. The 42 different paired consensus sequences in humans, which 

are in at least 100 introns, in rank order from most common to least common (Table 6) were 

analyzed individually to determine whether they are enriched or depleted for any of 36 AS types.  
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Table 6. The Top 42 Ranked Intron Consensus Sequences in Humans. Rank, the most to 
the least common consensus sequence. Donor-Acceptor (5S-3S), the intron sequences of the 
donor and acceptor sequences. Count, the count number of introns that have the indicated 
consensus sequence (N>100). 1-42, the total number of introns in rank 1-42 is 213,949, which 
represents 99.44% of the total number of introns in humans. 
 
Rank	 5S-3S	 Count	 Rank	 5S-3S	 Count	 Rank	 5S-3S	 Count	
0	 ALL	 215155	 15	 gucag_ag	 1650	 30	 gc_ag	 230	
1	 gugagu_ag	 30585	 16	 gugugu_ag	 1421	 31	 gucgg_cag	 202	
2	 guaag_ag	 29538	 17	 guuagu_ag	 1415	 32	 guca_ag	 198	
3	 guaagu_ag	 28972	 18	 guuugu_ag	 1113	 33	 guccg_ag	 162	
4	 gugag_ag	 26627	 19	 gcaagu_ag	 967	 34	 gcagg_ag	 153	
5	 guaa_ag	 22188	 20	 guuggu_ag	 929	 35	 guucgu_ag	 147	
6	 gua_ag	 20040	 21	 gugggu_ag	 918	 36	 guauccuu_ag	 144	
7	 guagg_ag	 12474	 22	 gugug_ag	 912	 37	 auauccuu_ac	 124	
8	 guaugu_ag	 6312	 23	 guggg_ag	 719	 38	 gua_ugguuucag	 118	
9	 guaug_ag	 5552	 24	 gucugu_ag	 450	 39	 guaag_uguucag	 117	
10	 guggg_cag	 5168	 25	 gucug_ag	 371	 40	 gu_ugguuuuag	 113	
11	 gu_ag	 4901	 26	 gugcgu_ag	 311	 41	 gcaug_ag	 112	
12	 guga_ag	 3332	 27	 gcaag_ag	 301	 42	 gu_uuugagacag	 109	
13	 gucagu_ag	 2439	 28	 gugcg_ag	 255	

Total	(1-42)	
213,943	
(99.44%)	14	 gugcg_cag	 1904	 29	 guauccuuu_ag	 250	
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In our analyses of the 5 most studied species, the most frequent intron class in most of 

the species is R-R, (e.g., 79% for H.sapiens, 29% for M. musculis, 62% for D. melanogaster, 

80% for C. elegans and 91% for A. thaliana) which means a invariant exon is followed by 

another invariant exon (Fig.22b). The second most common intron class, in most of the 50 

species analyzed, is S-S (e.g., 5% for H. sapiens, 22% for M. musculus, 4% for D. 

melanogaster, and 3% for C. elegans), which means that two consecutive 7 exons are skipped, 

either together or individually, in mature RNA (Fig.22c).  

Other studies have also suggested that exon skipping is the most frequently occurring 

alternative splicing event. For example, it was found that over one third of exons can be skipped 

(~38%) (Ast, 2004; Sugnet et al., 2004) and “pathological” exon skipping is commonly seen in 

diseases with multiple disrupted alternative splicing events, especially in cancer (Watson and 

Watson, 2010). We then compared alternative splicing consensus sequences among the 50 

species to determine whether they are evolutionarily conserved and whether they are enriched 

in the same classes of AS types. The top two consensus sequences that are shared by the 

greatest number of species are gugagu_ag and gu_ag (Fig.23). The motif gugagu_ag is 

enriched for the intron class A5-A3 in 10 of the 50 species (Fig.23a), and the motif gu_ag is 

enriched in the intron class A5-S in 11 of the 50 species and is depleted in the intron class A5-S 

in 4 of the 50 species (Fig.23b).  

Humans and mouse share 80% of all alternative RNA splicing motifs. When we looked 

for a possible reason why D. melanogaster, C. elegans and A. thaliana share only small portion 

of significant motifs with human (14%, 26% and 29%), we found that, although the canonical 

sequence gu_ag is the most highly conserved (98%), the third base after the splicing donor “gu” 

varies. The base adenine was hardly ever observed in the third position of the intron donor 

sequence in D. melanogaster or C. elegans (less than 1%), while adenine is the most common 
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nucleotide in the third position in the splice donor, i.e., gua_ag, for both human (58.4%) and 

mouse (58.3%). 
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Fig.23. Conserved Splicing Motifs in 50 Species. a, The alternative 5’ splice site – alternative 
3’ splice site (A5-A3) class is under represented for the consensus sequence gugagu_ag in 10 
of the 50 species analyzed. b, Donor and acceptor motif structure for gugagu_ag class. The 
splice donor (gu) starts at 11 and the splice acceptor (ag) ends at position 9 (vertical lines). c, 
The alternative 5’ splice site – skipped exon (A5-S) class is enriched for the consensus 
sequence gu_ag in 11 of the 50 species and depleted in 4 of the 50 species analyzed. d, Donor 
and acceptor motif structure for gu_ag class. 
 

 

  

!
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Moreover, there are many practical uses for understanding the differential dosage of the 

AS types. For example, many diseases, including cancer, have mutations that cause changes in 

alternative RNA splicing that contribute to pathogenesis (Watson and Watson, 2010). It was 

estimated that at least 15% to 50% of mutations that cause human diseases affect splice-site 

selection (Wang and Cooper, 2007; Singh and Cooper, 2012). Here, we show how differential 

dosage of the AS types helps to interpret human genetic diseases that are caused by mutations 

near splice donor and acceptor sites (Singh and Cooper, 2012). Using the databases of 

disease-causing mutations at spliced 3’ and 5’ splice sites, dbass5 and dbass 

(http://www.dbass.org.uk/dbass5/viewlist.aspx) (Singh and Cooper, 2012), we analyzed all 

intron mutations at intron positions +3, +4, +5 and +6 (the first intron nucleotide at the splice 

donor is +1) and successfully correlated the alternative RNA splicing code to 96 different 

mutations in 56 genes.  

One of the examples showed that Menkes disease (MD), which has several alleles in the 

ATP7A gene that are associated with alternative splicing defects, is a lethal disorder of copper 

metabolism that lead to severe neurological degeneration (Møller et al., 2000). Occipital horn 

syndrome (OHS) is a milder allelic form that is caused by partial loss of function of the ATP7A 

gene (Møller et al., 2000). Both MD and OHS are caused by mutations in the intronic sequences 

of the ATP7A gene, which encodes an ATPase that is responsible for copper efflux from cells 

(Fig.24b) (Nissim-Rafinia and Kerem, 2002). In the ATP7A gene, two splice-site mutations 

(IVS6+1G>A, IVS6+5G>A) for MD and one (IVS6+6T>A) for OHS were identified in a previous 

study (Fig.24) (Møller et al., 2000).  

The main biological effect of the mutation in the first position of the splice donor site of 

intron 6 (gu to au) is cryptic downstream splice donor usage followed by exon 7 skipping 

(Fig.24c) (Møller et al., 2000). Exon skipping and cryptic splice site activation are typical results 
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of mutations in any of the four core consensus bases, gu_ag, and can be explained without our 

hypothesis. However, why the ATP7A mutation in position 5 of intron 6 (IVS6+5G>A) has such 

a severe effect on alternative splicing was previously not understood since this is outside of the 

canonical gu_ag consensus sequence (Fig.24d) (Møller et al., 2000). Now, we can better 

explain the alternative splicing phenotypes caused by the mutations the 5th position of the 5’ 

splice site of intron 6 of ATP7A.  

The wild-type sequence guaagu_ag corresponds to a paired consensus sequence that is 

overrepresented for R-R, which means that there is little or no alternative splicing in the wild-

type ATP7A gene for this intron (Fig.22a). However, the 5th position mutation (Fig.24d) 

corresponds to the guaa_ag paired consensus sequence that is over-represented for the intron 

class S-S (Fig.22c). Therefore, the alternative RNA splicing code helps explain why two 

adjacent exons, exons 6 and 7, are skipped as the result of the mutation in the 5th position 

(Fig.24d). A similar argument can be made for the milder ATP7A mutation in OHS, 

(IVS6+6T>A), which leads to a motif change to guaag_ag, which is an overrepresented motif for 

the intron class A3-S, and leads to incomplete exon 6 and/or exon 7 skipping and cryptic splice 

site usage 50 nucleotides downstream of the normal 5’ splice site in intron 6, at a second 

guaag_ag sequence (Fig.24e).  

In the OHS allele, exon 6 becomes an A3 exon because the 5’ splice site of exon 5 can 

join with the normal 3’ splice site or exon 6 or the alternative 3’ splice sites of exon 7 or exon 8 

(Fig.24e). We note that the above analysis for ATP7A intron 6 is an over simplification of what is 

required to predict the effect of an intron mutation because multiple consensus sequences are 

often enriched or depleted in several of the 36 types on introns. For example, the wild type 

ATP7A intron 6 consensus sequence, guaagu_ag, corresponds to a consensus sequence that 

is enriched for R-R, R-S, and S-APA (Fig.24a). Therefore, in order to predict the outcome of a 
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mutation in a consensus sequence, one must determine which intron classes are uniquely 

enriched when a mutation is present that was not enriched in the wild-type sequence. The sixth 

position mutation in OHS has the intron sequence guaag_ag which is enriched in A3-S and R-R. 

This might explain why both A3-S and R-R splicing events are induced by the OHS mutation 

(Fig.24e).  

Similarly, the fifth position mutation in MD2 has 10 the sequence guaa_ag, which is only 

enriched in the intron type S-S. This might explain why S-S splicing events are induced by the 

MD2 mutation (Fig.24d). Similar to the MD disease, the alternative RNA splicing code might 

also be used to explain +3 to +6 intron mutations in neurofibromatosis type 1 (NF1), one of the 

most prevalent inherited disorders in human (Hastings and Krainer, 2001), beta thalassemia 

(HBB) (Felber et al., 1982), and many other human diseases (data not shown). 
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Fig.24. ATP7A Mutations in Menke’s Disease. a. Summary of the mutation loci and motif 
changes. b. Wild type ATP7A intron 6 has the sequence guaagu_ag. The p-value (up) for this 
sequence in the Retained – Retained (R-R) class of introns is 1E-14. c. The MD1 mutation 
(IVS6+1G>A) in ATP7A causes complete exon 6 and/or exon 7 skipping and cryptic splice site 
usage at the 5th position in the intron at the sequence guaag_ag. d. The MD2 mutation 
(IVS6+5G>A) in ATP7A causes complete exon 6 and/or exon 7 skipping and has the sequence 
guaa_ag. The p-value (up) for this sequence in the skipped – skipped (S-S) class of introns is 
1E-13. e. The OHS mutation (IVS6+6T>A) in ATP7A is a weaker allele that causes incomplete 
exon 6 and/or exon 7 skipping and cryptic splice site usage at a second guaag_ag motif 50 
base pairs downstream of the splice donor site. The p-value (up) for guaag_ag in the Alternative 
3’ splice site – skipped class of introns is 3E-4.  
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In addition to the canonical splicing pathway, which uses the gu_ag consensus 

sequence, there are also non-canonical (a.k.a., minor) splicing pathways that sometimes do not 

use the gu_ag consensus (Padgett, 2012). The canonical splicing pathway generally uses the 

U1 and U2 small RNAs in their splicing mechanism, always at gu_ag introns, while the non-

canonical pathway uses U11 and U12 small RNAs, at both gu_ag and au_ac introns. The U12-

like introns also have several conserved nucleotides that flank the splice donor and splice 

acceptor sequences (Padgett, 2012). When we searched for U12-like consensus sequences in 

the lists of intron consensus sequences, we found that human and mouse share the top three 

U12-like sequence matches: (1) guauccuuu_ag (Rank 29, Table 6), (2) auauccuu_ac (Rank 37, 

Table 6) and (3) guauccuu_ag (Rank 36, Table 6). The U12- like motif guauccuuu_ag is also the 

best match with the U12-like splicing pathway in A. thaliana. Curiously, both D. melanogaster 

and C.elegans have the weakest matches to the U12-like splicing sequence, gugggu_cag and 

guucguuuuu_uuucag, respectively, even though they are presumably evolutionarily closer to 

humans than plants. 

As we showed with mutations that affect the major splicing machinery, mutations that 

affect the minor splicing machinery can also be better interpreted with the paired consensus 

sequence motifs that we identified. One example involves a tumor suppressor gene, LKB1, 

whose splice acceptor mutation in the second intron is thought to cause Peutz-Jeghers 

syndrome (PJS) (Hastings et al., 2005). This mutation changes the splice junction sequence 

from auauccuu_ac to guauccuu_ac, and causes aberrant splicing, even though the mutation is 

changing a non-canonical ‘au’ splice donor to a canonical ‘gu’ splice donor (Fig.25a).  

Perusing the alternative RNA splicing code, we noticed that the wild-type LKB1, 

auauccuu_ac, is present, but the sequence found in PJS, guauccuu_ac, is not present on the 

paired RNA splicing consensus sequence table in humans (Table 6). Therefore, even though 
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the consensus sequence table indicates that the splice donor sequence guauccuu is a good 

minor splice donor sequence, the paired-sequence analyses indicate that the ‘gu’ core splice 

donor sequence must be paired with another canonical splice acceptor sequence, ‘ag’, even in 

U12-type introns.  

In other words, our analyses suggest that there are at least two distinct classes of U12-

type introns in humans; one with the core sequence gu_ag and the other with au_ac, and the 

machinery that recognizes the two ends of the introns in the U12-type splicesosomes cannot be 

swapped. This hypothesis might also help explain the unusual splicing reactions at the 3’ splice 

site to be multiple cryptic dinucleotide termini (such as cg, au, ug and gg) observed from 

different patients since no “ag” is present in vicinity of the splice acceptor site (Fig.25b) 

(Hastings et al., 2005).  
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Fig.25. The Alternative mRNA Splicing Code Predicts the Effects of a U12-type Intron 
Mutation, IVS2+1A>G, in the LKB1 gene. a, Schematic of human LKB1 wild-type gene 
sequence, has a “auauccuu_ac” U12-like intron consensus sequence. Exon numbers are shown 
in boxes, sequences belong to exons are uppercase; lines represent introns, sequences 
belonging to introns are lowercase. The 5’ and 3’ splice site recognition machinery of the U12 
splicesosome complex are shown schematically. The lariat site is shown as an ‘A’ in a black 
circle. b, The mutation in Peutz-Jegher’s syndrome (IVS2+1A>G) changes the U12-like 
consensus sequence from auauccuu_ac to guauccuu_ag. However, since no “ag” is detected at 
the 3’ splice site, cg, au, ug and gg become alternative dinucleotide termini. 
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In summary, the alternative RNA splicing code can also be used to better understand 

how human germline disease mutations can affect alternative RNA splicing and lead to disease 

etiology. However, future biochemical experiments are needed to test the hypothesis that the 

many classes of paired alternative RNA splicing events in humans with paired consensus 

sequences have unique macromolecular complexes that regulate RNA maturation. Future 

bioinformatics analyses are needed to predict how a particular splice site mutation in any of the 

first or last few nucleotides in an intron precisely affects alternative splicing. The alternative 

splicing code should help inform both of these endeavors. 
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ABSTRACT 

IDENTIFICATION OF LEAD-SENSITIVE EXPRESSION AND SPLICING 
QUANTITATIVE TRAIT LOCI IN DROSOPHILA MELANOGASTER BY 

ANALYSIS OF RNA-SEQ DATA 

by 

WEN QU 

December 2016 
Advisor: Dr. Douglas M. Ruden 

Major: Pharmacology 

Degree: Doctor of Philosophy 

Lead exposure has long been one of the most important topics in global public health 

since it is a potent developmental neurotoxin. Here, we conducted an expression QTL (eQTLs) 

analysis, which is genome-wide association analysis of genetic variants with differential gene 

expression, in the male heads of 79 Drosophila melanogaster recombinant inbred lines 

originally from eight parental strains in the presence or absence of developmental exposure to 

250 µM lead acetate. The aim was to study the effects of lead exposure on gene expression 

and identify the lead-responsive genes. After detecting 1,536 cis-eQTLs and 952 trans-eQTLs 

(1000 permutation threshold at 0.05), we focused our analysis on lead-sensitive “trans-eQTL 

hotspots,” defined as genomic regions that are associated with a cluster of genes in a lead-

dependent manner. We noticed that the genes associated with one of the 13 detected trans-

eQTL hotspots, Chr2L: 6,250,000 could be roughly divided into two groups based on their 

differential expression profile patterns and different categories of function. We visualized the 

expression of all the associated genes in the trans-eQTL hotspot with hierarchical clustering. 

Besides the overall expression profile patterns, the heat maps displayed the segregation of 
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differential parental genetic contributions. This suggested that trans-regulatory regions with 

different genetic contributions from the parental lines have significantly different expression 

changes after lead exposure. We believe that the lead-responsive trans-eQTL hotspots 

generated in this study could improve our understanding of genetic dissection of transcript 

abundance and provide insights into the mechanisms of how environmental toxins affect 

transcriptional pathways.  

In a follow-up study, we also found lead-responsive sQTLs. The identification of lead-

responsive sQTLs provides further evidence that different parental genomic contribution can 

cause significantly differential isoform usage after developmental lead exposure. Great 

achievements have been made in understanding how trans-sQTL hotspots alter the 

susceptibility to lead exposure, opening up a gate towards the mechanisms of trans-sQTL 

hotspots, as well as the neurotoxicity of lead.  

Chapter 1 is currently under minor revision in Neurotoxicology. Chapter 2 will be 

submitted to Neurotoxicology after the first submission is accepted. Chapter 3 will probably be 

submitted to Frontiers in Genetics. 
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